

Hibernate Quickly
Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Hibernate Quickly
 Patrick Peak

Nick Heudecker

M A N N I N G
Greenwich
(74° w. long.)

Licensed to Tricia Fu <tricia.fu@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2006 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books they publish printed on acid-free paper, and we exert our best efforts to
that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1932394419

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06 05
Licensed to Tricia Fu <tricia.fu@gmail.com>

For my brother, Matthew
 —P.G.P.

For Trevin
—N.J.H.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Brief contents
1 ❍ Why Hibernate? 1

2 ❍ Installing and building projects with Ant 26

3 ❍ Hibernate basics 50

4 ❍ Associations and components 88

5 ❍ Collections and custom types 123

6 ❍ Querying persistent objects 161

7 ❍ Organizing with Spring and data access objects 189

8 ❍ Web frameworks: WebWork, Struts, and Tapestry 217

9 ❍ Hibernating with XDoclet 274

10 ❍ Unit testing with JUnit and DBUnit 313

11 ❍ What’s new in Hibernate 3 346

Appendix ❍ The complete Hibernate mapping catalog 364
vii

Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Contents
preface xv
acknowledgments xvii
about this book xviii
about the cover illustration xxiv

1 Why Hibernate? 1
1.1 Understanding object persistence 3

Identity 4 ❍ Inheritance 5 ❍ Associations 5
Object/relational mapping 6

1.2 Using direct JDBC 9
Example application 10 ❍ Retrieving object graphs
using JDBC 11 ❍ Persisting object graphs to a rela-
tional model 15 ❍ Deleting object graphs 18
Querying object graphs 19

1.3 Persistence with Hibernate 20
Simplicity and flexibility 20 ❍ Completeness 22
Performance 23

1.4 Summary 25

2 Installing and building projects with Ant 26
2.1 Getting a Hibernate distribution 28

Installing Ant 30 ❍ Getting Ant 30 ❍ Extracting
ix

and installing Ant 30

Licensed to Tricia Fu <tricia.fu@gmail.com>

x Contents
2.2 Setting up a database 31
Getting MySQL 32 ❍ Testing MySQL 32
MySQL drivers 34

2.3 Setting up a project 34
Defining directories 35 ❍ Ant 101 36
Running Ant 39

2.4 Habits of highly effective build files 41
Connecting Hibernate 42 ❍ Reusable build
files 46 ❍ Expanding your horizons 48

2.5 Summary 49

3 Hibernate basics 50
3.1 Configuring Hibernate 51

Basic configuration 53

3.2 Creating mapping definitions 56
IDs and generators 58 ❍ Properties 59
Many-to-one element 60 ❍ Proxies 62
Collections 63 ❍ Cascades 64
Fetching associated objects 66

3.3 Building the SessionFactory 66
Configuring the SessionFactory 66

3.4 Persisting objects 68

3.5 Retrieving objects 70

3.6 The Session cache 72

3.7 Advanced configuration 74
Connection pools 74 ❍ Transactions 76
Cache providers 79

3.8 Inheritance 83
Table per class hierarchy 83
Table per subclass 85

3.9 Summary 86
Licensed to Tricia Fu <tricia.fu@gmail.com>

Contents xi
4 Associations and components 88
4.1 Associations 89

Many-to-one relationships, in depth 90
The central configuration file 95
Defining sample data 96

4.2 Building tables with Ant and SchemaExport 99
Logging with log4j and Commons Logging 102
Running SchemaExport 104 ❍ Loading the
Events 106 ❍ Refactoring 108 ❍ Finding
Events 113 ❍ Cascades 115

4.3 Components 116
What’s in a component? 117 ❍ Mapping a
component 119 ❍ Why use a component? 121

4.4 Summary 122

5 Collections and custom types 123
5.1 Persisting collections and arrays 125

Using interfaces 126 ❍ Mapping persistent
collections 128 ❍ Collection types 131
Lazy collections 138 ❍ Sorted collections 139
Bidirectional associations 142 ❍ Cascading
collections 145

5.2 Implementing custom types 147
UserTypes 148 ❍ Implementing
CompositeUserTypes 154

5.3 Summary 159

6 Querying persistent objects 161
6.1 Using HQL 162

session.find(…) 163 ❍ The Query interface 164

Outer joins and HQL 168 ❍ Show SQL 169
Query substitutions 169 ❍ Query parser 170
Licensed to Tricia Fu <tricia.fu@gmail.com>

xii Contents
6.2 Querying objects with HQL 171
The FROM clause 171 ❍ Joins 172
Selects 174 ❍ Using functions 176
HQL properties 178 ❍ Using expressions 179

6.3 Criteria queries 183

6.4 Stored procedures 185

6.5 Hibern8IDE 186

6.6 Summary 187

7 Organizing with Spring
and data access objects 189
7.1 The ubiquitous DAO pattern 190

Keeping the HQL together 191

7.2 Analyzing the DAO 196
Boilerplate code 196 ❍ Potential
duplication 196 ❍ Detached objects only 197

7.3 The Layer Supertype pattern 198
Creating an AbstractDao 199

7.4 The Spring Framework 202
What’s in a template? 204
Beans and their factories 208

7.5 Summary 215

8 Web frameworks: WebWork, Struts,
and Tapestry 217
8.1 Defining the application 219

8.2 A quick overview of MVC 219
Service Layer pattern 222

8.3 Decoupling Hibernate from the web layer 227
Working with detached objects 227 ❍ Session
scope 229 ❍ Accessing the Session from the
Controller 230 ❍ Accessing the Session from

the Service layer 235

Licensed to Tricia Fu <tricia.fu@gmail.com>

Contents xiii
8.4 WebWork 238
WebWork fundamentals 238
Creating controllers 239

8.5 Struts 253
Struts fundamentals 254
Building Struts Actions 256

8.6 Tapestry 261
Getting started 261 ❍ Tapestry
fundamentals 261 ❍ HTML views 262
Page controller 264 ❍ Page specification 267
web.xml 269

8.7 Hibernate in the view layer 270

8.8 Summary 272

9 Hibernating with XDoclet 274
9.1 Essential XDoclet 276

JavaDoc basics 276 ❍ XDoclet: Building your own
tags 277 ❍ Installing XDoclet 279
Configuring Ant 280

9.2 Making single objects persistent 282
The @hibernate.class tag 283 ❍ The @hibernate.id
tag 284 ❍ The @hibernate.property tag 287
The @hibernate.column tag 289

9.3 Basic relationships 292
The @hibernate.many-to-one tag 292
The @hibernate.component tag 295

9.4 Building collections 300
One-to-many: a kicking set of Speakers 301
The @hibernate.set tag 303
The @hibernate.collection-key 304
The @hibernate.collection-one-to-many tag 305

9.5 Going where no XDoclet has gone before 306
Merge points 306 ❍ Property substitution 308

9.6 Generating the hibernate.cfg.xml file 310
9.7 Summary 311

Licensed to Tricia Fu <tricia.fu@gmail.com>

xiv Contents
10 Unit testing with JUnit and DBUnit 313
10.1 Introduction to unit testing 314

Automate those tests 315 ❍ Assertions 316
Expect failures 317

10.2 JUnit 318
Test-infecting your build file 318
Polishing off the build file 321

10.3 Testing the persistence layer 324
What do we want to test? 324 ❍ Testing basic
persistence 325 ❍ Testing queries 329
General database testing tips 331

10.4 Testing with DBUnit 336
Loading test data 336
ProjectDatabaseTestCase 340

10.5 Summary 345

11 What’s new in Hibernate 3 346
11.1 Filters 347

11.2 Mapping improvements 348
Multiple table mapping 348 ❍ Discriminator
formulas 349 ❍ Union subclasses 351
Property references 352

11.3 Dynamic classes 352

11.4 Annotations 354

11.5 Stored procedures and SQL 357

11.6 Persistence events 359

11.7 Lazy properties 361

11.8 Summary 363

Appendix The complete Hibernate mapping catalog 364

Index 411
Licensed to Tricia Fu <tricia.fu@gmail.com>

Preface
Like many others, I started writing my own persistence framework
before I discovered Hibernate. In 2002, I was working on a large busi-
ness-to-business portal that underwent frequent changes. It seemed that
the persistence code changed weekly, making it impossible to both main-
tain the SQL and have a stable system. My first attempt at a persistence
framework covered a few of the basics: associations and SQL generation.
When these proved insufficient for my needs, I realized the task was large
and began looking at the available persistence options for Java applica-
tions. I soon decided to go with Hibernate.

Hibernate was still relatively new at the time; version 1.0 had just been
released. However, it seemed the logical choice—it wasn’t overly compli-
cated and offered the features that I needed and didn’t have time to
implement. Hibernate also didn’t require that I change my existing code
to accommodate it.

I quickly became impressed by Hibernate, having used it on a few
projects. In the developer community, its popularity skyrocketed with
version 2.0. I wrote a well received introductory article about Hibernate
for TheServerSide, and eventually received an offer to contribute to the
upcoming book Hibernate in Action from Manning. Shortly after that,
Manning asked if I would be interested in writing another, complemen-
tary book on Hibernate with co-author Patrick Peak.

Patrick too had written articles on TheServerSide and we discovered a
mutual interest in working together. The idea of writing a complete book
xv

Licensed to Tricia Fu <tricia.fu@gmail.com>

xvi Preface
loomed as a daunting undertaking but we could not resist. We decided
to write the book as quickly as possible, while still publishing a first
rate product.

Hibernate Quickly is the end result. Unlike Hibernate in Action which is an
exhaustive reference, this book attempts to introduce the reader
quickly to the core knowledge needed to start being productive with
Hibernate. It uses the remaining pages to cover the larger environment
that Hibernate operates in—the Hibernate “ecosystem.” Hibernate 3
was released as we were finishing the writing and the book covers the
newest, version 3.0 features.

Of course, we couldn’t have done it alone—writing a book is a team
effort and our team included reviewers, friends, colleagues, and the
staff at Manning. I hope you will learn as much from reading this book
as we did writing it.

NICK HEUDECKER
Licensed to Tricia Fu <tricia.fu@gmail.com>

Acknowledgments
Although only our names appear on the cover, this book would not have
been possible without a dedicated team of individuals who assisted in
helping us get the job done.

We’d like to start by thanking the Hibernate developers for creating a
great product and working to build a community around it. Without com-
munity, Hibernate wouldn’t have the vibrancy that it currently enjoys.

We also appreciate the contributions of our technical reviewers, including
Will Lopez, Richard Brewster, Peter Eisentraut, Jack Herrington, Mark
Monster, Doug Warren, Michael Koziarski, Norman Richards, Sang
Shin, Christopher Bailey, Andrew Grothe, Anjan Bacchu, Will Forster,
Christopher Haupt, Ryan Daigle, and Ryan Cox. You helped us focus
the book in the right places and for the right audience.

The production of this book owes a great deal to everyone at Manning,
including our publisher, Marjan Bace. We owe a special debt to our
developmental editor, Jackie Carter, whose endless patience and guid-
ance made this book possible. Thanks to our review editor Karen Tegt-
mayer, our technical editor Doug Warren, our copy editors Liz Welch
and Tiffany Taylor, proofreader Barbara Mirecki, typesetter Dottie Mar-
sico, cover designer Leslie Haimes, publicist Helen Trimes, project editor
Mary Piergies, and Manning web master Iain Shigeoka.

To everyone involved in the project: Without your assistance, Hibernate
Quickly wouldn’t be the book we wanted it to be.
xvii

Licensed to Tricia Fu <tricia.fu@gmail.com>

About this book
Hibernate is a solid, productive Object Relational Mapping (ORM) tool
that lets developers think and work with objects rather than tables and
columns. It has grown over the years, been used by many developers, and
has gone through three major versions. This book’s goal is to make you
productive with Hibernate.

Hibernate Quickly is a gradual introduction to the features of Hibernate,
covering the latest version, Hibernate 3. Each chapter introduces a series
of concepts that form a foundation for the next chapter, but should illus-
trate those concepts completely. We set out to write the book we would
have liked to have when we first learned Hibernate. We both think that
studying good code examples is one of the best ways to learn, so we
included as many as we could. We also wanted to make our own refer-
ence, a book we could have on our desk and turn to when we forgot just
how that one mapping needed to be written.

Developers don’t work with Hibernate in a vacuum. In addition to stan-
dard Java, developers often use Hibernate with a host of other third-party
(often open source) tools and libraries, including J2EE (web applica-
tions); build tools like Ant; unit-testing frameworks like JUnit; and frame-
works like XDoclet, Struts, WebWork, Tapestry, and Spring. This book
shows how Hibernate fits into your development projects by demonstrat-
ing how these third party tools can be integrated with Hibernate. Because
this book is about Hibernate, and we didn’t want it to be 1,000 pages long
xviii

or weigh as much as a battleship, we assume that developers are partially

Licensed to Tricia Fu <tricia.fu@gmail.com>

About this book xix
familiar with the third-party libraries with which they want to integrate
Hibernate. We provide some introduction, so you should be able to fol-
low along if you’ve used, say, Tapestry; but you should consult Man-
ning’s In Action series for more details about those tools.

Roadmap

Hibernate Quickly is logically divided into two parts. The first half of the
book introduces the core concepts and features of Hibernate. The sec-
ond half puts Hibernate into context by showing you how to integrate
it with a number of open source tools and frameworks.

Chapter 1 is both a justification and an introduction. It covers the rea-
sons why Hibernate is useful, and it compares and contrasts Hibernate
with JDBC. It also covers the basics of what object relational mapping
is and provides an introduction to how Hibernate’s particular brand of
persistence works.

Chapter 2 is the project kickoff. It covers setting up a Hibernate
project and using Ant, an open source Java build tool. It shows you
where to find both Ant and Hibernate and how to organize your
project. We also discuss setting up and integrating a database,
MySQL. By the end of this chapter, you should have a solid founda-
tion for your project to build on in the subsequent chapters.

Chapter 3 is about the core concepts of Hibernate. It covers mapping
files, configuration, and the essential classes developers use to persist
and find objects from the database. Finally, this chapter touches on a
few more advanced topics like inheritance, caching, and transactions.

Chapter 4 discusses relationships. Specifically, we cover in detail two
of the most common relationships between persistent objects: many-to-
one and components. This chapter also explains how to generate your
database from Hibernate mappings using the SchemaExport tool.

Chapter 5 covers collections and custom types. Hibernate allows you
to use basic java.util collections classes to express both one-to-many

and many-to-many relationships between entities, and we show how to

Licensed to Tricia Fu <tricia.fu@gmail.com>

xx About this book
map and use them here. In addition, we demonstrate both how and
why you can use Hibernate’s custom types, which let you define new
datatypes that can map to database columns.

Chapter 6 discusses finding objects. Hibernate uses a SQL-like query
language that allows you to express queries using classes and proper-
ties rather than tables and columns. This chapter covers Hibernate
Query Language’s (HQL) syntax and usage in depth, including
parameters, joins, from/select clauses, and projection. So that you can
test your HQL, the chapter also touches on Hibern8IDE, a tool that
lets you rapidly test and try your queries.

Chapter 7 is about patterns and architecture. We show you how to bet-
ter organize your project with a few patterns like the Data Access
Object (DAO) and Layer Super types. We also explain how to intro-
duce a popular application framework, Spring, into your project.
Spring integrates extremely well with Hibernate; it streamlines the
DAO pattern along with some of the productive boosting features.

Chapter 8 discusses “webifying” your Hibernate application. We cover
the basics of the Model View Controller pattern; and we build our sam-
ple application, the Event Calendar, using three open source web
frameworks. The same application is written three times using a similar
core architecture but integrated with Struts, WebWork, and Tapestry.
Our intent is to show the general principles you need to consider when
writing Hibernate applications for the Web.

Chapter 9 covers code generation with XDoclet. Until JDK 1.5/Java
5.0 becomes more widely accepted, Hibernate developers can either
hand-write their mapping files or, better yet, use XDoclet to generate
them. This chapter shows you how to do the latter. We go in depth to
show you how to set up, configure, and generate mapping files for sin-
gle objects, many-to-one, components, and collections. In addition, we
explain how to generate your configuration files, hibernate.cfg.xml,
using XDoclet.
Licensed to Tricia Fu <tricia.fu@gmail.com>

About this book xxi
Chapter 10 is about testing. It shows you how to use two tools, JUnit
and DBUnit, to verify that your Hibernate application works as
expected. We cover the general principles of unit testing and how to
apply them to testing a database.

Chapter 11 discusses Hibernate 3. It’s a brief guide for those who are
familiar with Hibernate 2 and want to know what’s new. This chapter
covers the important new features, including filters, mapping file
improvements, dynamic classes, and the new persistent event model.

The appendix is the reference we wanted for ourselves. It’s a com-
plete reference guide to all the common relationships that Hibernate
allows. For each relationship, the appendix shows an object model,
table models, Java classes (with XDoclet markup), and the resulting
mapping file.

Who should read this book?

In short, Java developers who work with databases. More specifically,
we aimed this book at two main groups of developers:

❂ Developers who are new to Hibernate and who want a step-by-step
guide to getting started painlessly

❂ Hibernate intermediate/expert users who want to learn how to inte-
grate Hibernate into their existing projects and make it work with
all the other tools they already know

We assume you’re familiar with basic object-oriented programming
techniques as well as the Java language. We discuss a lot of third-party
tools, like Ant and XDoclet, but no in-depth familiarity with them is
needed. Because Hibernate builds on JDBC and uses databases, it’s
helpful if you’re familiar with SQL and how to use it to work with
databases using Java.

Code

The code for this project is available at this book’s website, www.man-
ning.com/books/peak.
Licensed to Tricia Fu <tricia.fu@gmail.com>

xxii About this book
Much of the source code shown early in the book consists of fragments
designed to illustrate the text. When a complete segment of code is
given, it’s shown as a numbered listing; code annotations accompany
some listings. When we present source code, we sometimes use a bold
font to draw attention to specific elements.

In the text, a monospaced font is used to denote code (JSP, Java, and
HTML) as well as Java methods, JSP tag names, and other source
code identifiers:

A reference to a method in the text generally doesn’t include the signa-
ture, because there may be more than one form of the method call.

A reference to a JSP tag includes the braces and default prefix but not
the list of properties the tag accepts (<c:out>).

A reference to an XML element in the text includes the braces but not
the properties or closing tag (<class>).

Author Online

Purchase of Hibernate Quickly includes free access to a private web
forum run by Manning Publications where you can make comments
about the book, ask technical questions, and receive help from the
authors and from other users. To access the forum and subscribe to it,
point your web browser to www.manning.com/peak. This page pro-
vides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

Manning's commitment to our readers is to provide a venue where a
meaningful dialog between individual readers and between readers and
the authors can take place. It is not a commitment to any specific
amount of participation on the part of the authors, whose contribution
to the AO remains voluntary (and unpaid). We suggest you try asking
them some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will
be accessible from the publisher's website as long as the book is in print.
Licensed to Tricia Fu <tricia.fu@gmail.com>

About this book xxiii
About the authors

PATRICK PEAK is the chief technology officer of BrowserMedia, a
Java/J2EE web development/design firm in Bethesda, MD. His focus
is on using open source frameworks/tools as a competitive advantage
for rapid custom software development. He has been using Hibernate
in numerous production applications for almost two years. He runs a
Java/Technology weblog at www.patrickpeak.com.

NICK HEUDECKER is the president and founder of System Mobile, a
software consulting firm headquartered in Chicago, IL. He has more
than nine years of commercial development experience, and he has
developed software products and solutions for multiple Fortune 500
clients as well as media, lobbying, and government organizations.
Licensed to Tricia Fu <tricia.fu@gmail.com>

About the cover illustration
The figure on the cover of Hibernate Quickly is called “An Officer of the
Janissaries.” The illustration is taken from a collection of costumes of the
Ottoman Empire published on January 1, 1802, by William Miller of Old
Bond Street, London. Janissaries were soldiers of the Ottoman Turkish
Army, loyal to the sultan, rather than to tribal leaders. These “New Sol-
diers,” which is what the name means in Turkish, were the elite troops of
the Ottoman Empire, renowned for their bravery and skills. The title
page is missing from the collection and we have been unable to track it
down to date. The book’s table of contents identifies the figures in both
English and French, and each illustration bears the names of two artists
who worked on it, both of whom would no doubt be surprised to find
their art gracing the front cover of a computer programming book...two
hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea
market in the “Garage” on West 26th Street in Manhattan. The seller was
an American based in Ankara, Turkey, and the transaction took place just
as he was packing up his stand for the day. The Manning editor did not
have on his person the substantial amount of cash that was required for
the purchase and a credit card and check were both politely turned down.

With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more
than an old-fashioned verbal agreement sealed with a handshake. The
xxiv

seller simply proposed that the money be transferred to him by wire and

Licensed to Tricia Fu <tricia.fu@gmail.com>

About the cover illustration xxv
the editor walked out with the bank information on a piece of paper
and the portfolio of images under his arm. Needless to say, we trans-
ferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that
might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations
that appear on our covers, bring to life the richness and variety of dress
customs of two centuries ago. They recall the sense of isolation and dis-
tance of that period—and of every other historic period except our
own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so
rich at the time, has faded away. It is now often hard to tell the inhabit-
ant of one continent from another. Perhaps, trying to view it optimisti-
cally, we have traded a cultural and visual diversity for a more varied
personal life. Or a more varied and interesting intellectual and techni-
cal life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the
fun of the computer business with book covers based on the rich diver-
sity of regional life of two centuries ago‚ brought back to life by the pic-
tures from this collection.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

1
Why Hibernate?

In this chapter

• Understanding persistence and object/relational mapping

• Introducing Hibernate

e’ve all been there. Six weeks into a cumbersome project, updated
requirements are received from the client that result in massive changes
to your application code. Weeks of work have to be scrapped or

changed to comply with the new requirements. Updating the web pages or GUI
is relatively simple, but hundreds or thousands of lines of database code,
including your beautiful, handcrafted SQL, have to be updated and tested.

There needs to be a better way to build database-backed applications.

This book presents Hibernate, an object/relational mapping framework
for Java applications. Hibernate provides the bridge between the data-
base and the application by storing application objects in the database for
the developer, rather than requiring the developer to write and maintain
mountains of code to store and retrieve objects.

You may wonder why Manning decided to publish a second book on
Hibernate. After all, Hibernate in Action is the authoritative source, written
by the project founders and widely regarded as the best reference on the
topic. Manning feels there are two distinct needs. One calls for a focused

W

1

and comprehensive book on the subject of Hibernate. It serves as the place

Licensed to Tricia Fu <tricia.fu@gmail.com>

2 CHAPTER 1 Why Hibernate?
to turn to when any Hibernate questions occur. The other need is for a
book that gives readers the proverbial 20% of information they require
80% of the time, including all the peripheral technologies and tech-
niques surrounding Hibernate. This is the book you are likely to turn to
if you want to get up and running quickly.

Since Hibernate is a persistence service, it’s rarely the only framework
or tool used in an application. You’ll typically use Hibernate alongside
a web application or inversion-of-control framework, or even a GUI
toolkit such as Swing or SWT. After covering the basics of Hibernate
in the first few chapters, we’ll move on to discuss development tools
like Ant and XDoclet. The majority of applications using Hibernate
will be web applications, so we’ll look at how Hibernate integrates
with three popular web frameworks: Struts, Webwork, and Tapestry.
We’ll also look at some support frameworks and utilities, like Spring
and JUnit.

This chapter is meant primarily for developers who haven’t been
exposed to object/relational mapping in the past and are wondering
what all the fuss is about. We start by introducing the concept of object
persistence and some of the difficult problems encountered when stor-
ing objects in a relational database. Then we examine the shortcomings
of storing objects in a database using Java Database Connectivity
(JDBC). After reviewing the popular methods used to persist objects,
we discuss how Hibernate solves most, if not all, of these issues.

Chapter goals

The goals for this chapter are as follows:

❂ Explain the concept of object persistence.
❂ Describe the object/relational mismatch and how JDBC fails to

resolve it.
❂ Introduce object persistence with Hibernate.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Understanding object persistence 3
Assumptions

Because object/relational mapping can be a complicated subject, we
assume that you

❂ Are comfortable building Java applications using JDBC
❂ Have built database-centric applications
❂ Understand basic relational theory and Structured Query Lan-

guage (SQL)

The common definition of persistence, related to software, is data that
outlives the process that created it. When data is persistent, you can
obtain the data at a later point in time and it will be the same as when
you left it, assuming an outside process didn’t change it.

There are a few kinds of persistence. When you’re editing a source file,
that file is persisted to disk for later retrieval and use. Files stored on
disk are probably the most common form of persistence. When we
refer to persistence in this book, we’re referring to storing application
data in a relational database. Applications, such as an online shopping
cart, typically persist data in a relational database.

Relational databases are a popular choice for storing data for a number
of reasons. They’re relatively easy to create and access, using the SQL.
Vendors also offer relational databases with a variety of features,
allowing you to select the ideal database for your application’s needs.
Because relational databases are so common, finding developers with
relevant experience is less difficult than for niche technologies.

The model used by relational databases, called the relational model,
represents data in two-dimensional tables. This logical view of the data
is how database users see the contained data. Tables can relate to each
other through the use of primary and foreign keys. Primary keys
uniquely identify a given row in a table, whereas foreign keys refer to a

1.1 Understanding object persistence
primary key stored in another table.

Licensed to Tricia Fu <tricia.fu@gmail.com>

4 CHAPTER 1 Why Hibernate?
Relational databases are designed to manage the data they contain, and
they’re very good at it. However, when you’re working with object-ori-
ented applications, you may encounter a problem when you try to per-
sist objects to a relational model. As just stated, relational databases
manage data. Object-oriented applications are designed to model a
business problem. With two radically different purposes in mind, get-
ting the models to work together can be challenging. Resolving the dif-
ferences has been the subject of much debate over the years and has
been referred to as the object/relational impedance mismatch or just
impedance mismatch.

The impedance mismatch is caused by the differences between object
and relational schemas. Most developers who have used direct JDBC
to store objects are aware the mismatch exists, even if they don’t
know the name for it. We’ll look at a few areas of the impedance mis-
match next.

1.1.1 Identity

One of the more significant areas of the impedance mismatch is in
regard to identity. Java objects exist independently of the values they
contain, which is to say that

objectA == objectB;

is different from

objectA.equals(objectB);

So, objects can either be identical or equal. If two objects are identi-
cal, they’re the same object. If the objects are equal, they contain the
same values. These different notions of identity don’t exist in rela-
tional models. Rows in a relational database are only identified by the
values they contain. How can you identify objects with their rela-
tional counterparts?

A common way to overcome this problem in relational models is to
introduce a unique identifier column, typically called a sequence or
identifier. The relational identifier is also represented in the object

model and becomes a surrogate for identity checking.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Understanding object persistence 5
Although the object identity problem can be resolved, a more signifi-
cant mismatch occurs when your object model uses inheritance.

1.1.2 Inheritance

A core feature of object-oriented languages is the ability to have one
object inherit from one or many parent objects. Figure 1.1 illustrates an
object hierarchy used in our example application.

Relational databases don’t support the notion of inheritance, so persist-
ing a rich object hierarchy to a relational schema can be complex. Since
inheritance is difficult to translate to a relational model, why can’t you
just design your object model without hierarchies?

Object-oriented languages were developed to model real-world prob-
lems. Inheritance is vital because it allows you to create a precise model
of the problem while allowing shared properties and behavior to cas-
cade down the hierarchy. You shouldn’t be forced into sacrificing this
feature because the relational model doesn’t support it.

1.1.3 Associations

The last portion of the impedance mismatch we’ll look at is the differ-
ences in associations between object and relational models. Associa-
tions are probably one of the easiest portions of the mismatch to
overcome since both models support this notion. The relational model
understands only one type of association: a foreign key reference to a

Event

id:Long

name:String

startDate:Date

duration:int

location:Location

Location

id:Long

name:String

NetworkingEvent ConferenceEvent
Figure 1.1 Simple object hierarchy

Licensed to Tricia Fu <tricia.fu@gmail.com>

6 CHAPTER 1 Why Hibernate?
primary key stored in another table. Compare that to the associa-
tions available in an object model: one-to-one, one-to-many and
many-to-many.

Converting an object-based one-to-one association to a relational
schema is simple: Reference the primary key of the associated objects.
If you have a one-to-many association, you can repeat this process for
each row on the “many” side. The only problem is that the database
doesn’t understand the one-to-many association—it only knows that a
foreign key refers to a primary key. Let’s look at a diagram of one-to-
one and one-to-many associations in a relational schema, shown in
figure 1.2.

Mapping a many-to-many association is typically done with a join
table. The join table contains two foreign key columns referencing two
tables, allowing multiple entries for each side of the association.
Figure 1.3 illustrates a many-to-many join table.

1.1.4 Object/relational mapping

We’ve touched on a few problems illustrating the impedance mismatch,
but we haven’t covered all areas of the mismatch. Our goal was simply

events
id
.....

speakers
id

event_id
.....

One-to-one and one-to-many associations are

direct relationships between two tables.

Figure 1.2
One-to-one and one-to-many

associations in a relational model

events

id

.....

speakers

id

.....

event _ speakers

event _ id

speaker _ id

.....

Many-to-many associations use a join table.
Figure 1.3 Many-to-many associations in a relational model

Licensed to Tricia Fu <tricia.fu@gmail.com>

Understanding object persistence 7
to explain what most developers realize intrinsically: Merging objects
with a relational schema isn’t easy. Object/relational mapping was
developed to solve these problems.

Object/relational mapping (ORM) is the process of persisting objects in
a relational database. ORM bridges the gap between object and rela-
tional schemas, allowing your application to persist objects directly
without requiring you to convert objects to and from a relational format.
There are many types of ORM solutions, offering varying levels of map-
ping support. Some ORM frameworks require that persistent objects
inherit from a base class or perform post-processing of bytecode.

Hibernate, on the other hand, requires a small amount of metadata for
each persistent object. Hibernate is a noninvasive ORM service. It
doesn’t require bytecode processing or a base persistent class. Hiber-
nate operates independently of application architecture, allowing it to
be used in various applications. It provides full object/relational map-
ping, meaning that it supports all the available object-oriented features
that relational databases lack.

Developers accustomed to using the standard JDBC API may wonder
why a tool like Hibernate is needed. After all, JDBC provides a simple
and complete interface to relational databases. Using JDBC directly is
ideal for basic applications, since you can quickly persist objects with
well-understood code. However, JDBC can get out of hand with
larger applications or when requirements change. If an object changes,
the code that persists the object must be changed and tested, as well as
all the SQL used to manage the object’s state.

Using Hibernate for application persistence helps avoid the drawbacks
of raw JDBC. In section 1.2, we demonstrate the shortcomings of
these techniques; then, in section 1.3, we explain how Hibernate allows
you to bypass them.

Of course, object/relational mapping isn’t a silver bullet for persistence
problems. There are instances where ORM, and therefore Hibernate,
isn’t the best solution.
Licensed to Tricia Fu <tricia.fu@gmail.com>

8 CHAPTER 1 Why Hibernate?
When to use ORM

Although powerful, object/relational mapping is fundamentally limited
by the underlying database schema, particularly in legacy databases.
For instance, if tables refer to each other through columns other than
primary keys, your chosen ORM solution may have trouble adapting
to the legacy schema. Let’s look at a good example of a bad design,
shown in figure 1.4.

Admittedly, this schema is a contrived example; but before you dismiss
it, realize that schemas even more poorly designed than this exist in
enterprise applications. Just what’s wrong with this schema? None of
the tables have a surrogate primary key. By a surrogate key, we mean
that the table’s primary key has no business significance. All the col-
umns in the tables are relevant to the business problem.

You can certainly map these tables to objects with an ORM solution,
but that may not be the best way to handle the domain model. You may
spend more time working around how your ORM framework manages
the data than is desirable. Alternative solutions, such as iBATIS, may
be a better candidate for persisting legacy databases.1

cars
vin

make

model

has_4wd

has_aircond

color

varchar(30)

varchar(50)

varchar(20)

boolean

boolean

varchar(15)

dealers
name

city

state

varchar(90)

varchar(20)

varchar(2)

sales
dealer

car

sale_date

FK to dealers(name)

FK to cars(vin)

date

Figure 1.4 Poorly designed database schema
1 iBATIS (www.ibatis.com) is an alternative to Hibernate.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using direct JDBC 9
ORM is a good solution for legacy databases when the schema

❂ Is highly normalized
❂ Has primary keys
❂ Has foreign key relationships referring to primary keys, not col-

umns

Thankfully, the Hibernate developers have been responsive to develop-
ers working with legacy database schemas. Hibernate 3, discussed in
chapter 11, adds many new features to support legacy database schemas.

Before diving into what Hibernate offers, let’s take a brief look at why
using JDBC is so painful for large applications. If you’re still clinging
to direct JDBC for application persistence, the next section is for you.

The core drawback of JDBC is that it doesn’t allow you to store
objects directly to the database—you must convert the objects to a
relational format. For instance, if you want to persist a new instance of
the Event class to the database, you must first convert the Event object
to a SQL statement that can be executed on the underlying database.
Similarly, when rows are returned from the database, you must convert
each result row into an instance of Event. Let’s look at some of the dif-
ficulties presented when converting objects and graphs of objects
between the relational and object models.

When working with objects, you’re generally using a number of con-
nected objects. This is called an object graph. An object graph repre-
sents an internally consistent view of application data. Internally
consistent means that a change made to one object is reflected through-
out the graph. The objects within a graph are typically connected using
one-to-one or one-to-many associations.

Using direct JDBC for persistence presents distinct problems for each
of the persistence operations: creation, updating, retrieval, and dele-

1.2 Using direct JDBC
tion. Some of the problems we describe expand on the object/relational

Licensed to Tricia Fu <tricia.fu@gmail.com>

10 CHAPTER 1 Why Hibernate?
mismatch, discussed earlier. We examine those problems in detail in a
moment, using an example application that will reappear throughout
this book.

1.2.1 Example application

To address the drawbacks of traditional application persistence with
JDBC, we must first introduce an example that we’ll use as the basis of
comparison. The application that we use throughout the book is an
event-management application used to manage a conference with
speakers, attendees, and various locations, among other things. To
demonstrate the problems with JDBC, we’ll discuss persisting one of
the central objects in the domain model, Event.

We use the term domain model frequently. A domain model is the col-
lection of related objects describing the problem domain for an applica-
tion. Each object in the domain model represents some significant
component in the application, such as an Event or Speaker.

Diagrams of the Event object and the relational table used to store the
Event are shown in figure 1.5.

The parallel between the Event object and the relational table is clear.
Each property in the Event class is reflected as a column in the events
table. The id column in the events table is the primary key for the
table. We’ve intentionally kept the Event object simple for the opening
discussion. With the object and relational table defined, we can move
forward with examining the drawbacks of application persistence with
direct JDBC.

Event

id:Long

name:String

startDate:java.util.Date

duration:int

events

id

name

start _date

duration

bigint (pk)

varchar (255)

date

int

Figure 1.5 The Event object and the events table
Licensed to Tricia Fu <tricia.fu@gmail.com>

Using direct JDBC 11
1.2.2 Retrieving object graphs using JDBC

Looking at the diagram of the Event object in figure 1.5, it appears that
converting between relational and object models presents little diffi-
culty. Problems arise when we want to retrieve a complete object graph
from a relational schema. Figure 1.6 presents a domain model for our
event-management application.

The Event class has three associations: a one-to-one association to the
Location object and two one-to-many associations to the Speaker and
Attendee objects. Figure 1.7 shows the relational tables for the domain
model. (The speakers table is omitted since it’s identical to the attend-
ees table.)

Let’s look at the one-to-one association of the events and locations
tables. The tables can be joined to retrieve the data from the locations
table for a given row in the events table with the following SQL:

select e.id, e.name, e.start_date, e.duration, l.id, l.name
from events e join locations l on e.location_id = l.id
where e.id = 1000;

Executing this SQL returns a single row with columns containing data
from both the events and locations tables.

The associations between the Event object and the Attendee and
Speaker objects can be more difficult to manage because they involve

Speaker Event Attendee

Location

* 1 1 *

1

1

Figure 1.6 A domain model for an Event

Licensed to Tricia Fu <tricia.fu@gmail.com>

12 CHAPTER 1 Why Hibernate?
one-to-many associations. Object associations are directional, from one
object to another object. To navigate from both ends of the association,
you must define the association in both objects. Listing 1.1 illustrates
the one-to-many association between the Event and Speaker objects,
using the following Java classes.

Listing 1.1 Creating a bidirectional association

package com.manning.hq.ch01;
import java.util.List;

public class Event {

 private String name;
 private List speakers;
 private Location location;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public List getSpeakers() {
 return this.speakers;
 }

 public void setSpeakers(List speakers) {
 this.speakers = speakers;
 }

 public Location getLocation() {

locations

id
name

bigint (pk)
varchar (255)

events

id
location_ id
name
start _date
duration

bigint (pk)
bigint
varchar (255)
date
int

speakers

id
name
title
event _ id

bigint (pk)
varchar (255)
varchar(50)
bigint

Figure 1.7 The foreign keys for events and speakers
 return location;

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using direct JDBC 13
 }

 public void setLocation(Location location) {
 this.location = location;
 }
}

package com.manning.hq.ch01;
public class Speaker {

 private Event event;

 public Event getEvent() {
 return this.event;
 }

 public void setEvent(Event event) {
 this.event = event;
 }
}

package com.manning.hq.ch01;

public class Location {

 private Long id = null;
 private String name = null;
 private Event event = null;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Event getEvent() {

 return event;

Licensed to Tricia Fu <tricia.fu@gmail.com>

14 CHAPTER 1 Why Hibernate?
 }

 public void setEvent(Event event) {
 this.event = event;
 }

}

By defining the association in both objects, you can navigate in either
direction: from the Speaker to the Event or from the Event to the
Speaker. When translating this association to the relational database,
you’ll realize that whereas the database has the notion of the associa-
tion through the use of foreign keys, it lacks the notion of association
multiplicity. The database doesn’t know that there are multiple rows in
the speakers table linked to the events table. You must write the logic
to retrieve relevant rows from the database to populate the one-to-
many associations.

To retrieve associated rows from the speakers table for a row in the
events table, you must execute separate queries for each table. Why
can’t you use another table join to the speakers table to retrieve the
data for the object graph, as you did for the locations table?

Suppose you want to retrieve one row in both the events and loca-
tions table, and they’re linked with a foreign key. The row in the
events table is linked to four rows in the speakers table, also with a
foreign key. The SQL to retrieve all data associated to the event data
is shown here:

select e.name, l.name, s.first_name, s.last_name from events e
join locations l on e.location_id = l.id
join speakers s on s.event_id = e.id
where e.id = 1000;

Executing this SQL results in a Cartesian product of the data, as
shown in figure 1.8. (If you’re unfamiliar with the term, a Cartesian
product is the combination of all pairs of elements in two sets.)
Licensed to Tricia Fu <tricia.fu@gmail.com>

Using direct JDBC 15
Although all the data was retrieved with a single query, Cartesian
products are generally inefficient. For this reason, to retrieve the data
for one-to-many associations, you should execute a separate query for
each object.

Remember that the domain model in figure 1.2 also has a one-to-many
association of Attendee instances. To retrieve the data for the Attendee
objects, you must write operations similar to the Speaker association.
Since an object graph often contains many objects, the amount of code
needed to retrieve a full object graph for an Event can be quite large.

Usually you only need to retrieve a portion of the object graph for a
specific view that is presented to the user, such as displaying the
Attendee instances assigned to an Event. Retrieving the extra objects
results in needless calls to the database and overhead in converting the
ResultSet into the corresponding domain objects.

A direct JDBC persistence layer would need to provide the ability to
return specific portions of the object graph, including the ability to pop-
ulate collections of associations when required. These aren’t trivial tasks
and require a significant investment for the developers and organization.

To this point, we have discussed retrieving objects. New problems
arise when you try to persist an object graph to a relational database.

1.2.3 Persisting object graphs to a relational model

If a new instance of Event needs to be persisted, you must first convert
the instance into a format for inclusion in a SQL statement. Assuming

Opening Presentation

Opening Presentation

Opening Presentation

Opening Presentation

Amy Watkins

Marcus Smith

Mark Johannson

Diane Davies

Hilton Convention Center

Hilton Convention Center

Hilton Convention Center

Hilton Convention Center

e.name s.namel.name

Figure 1.8 Cartesian product result
that Speaker and Attendee instances have been associated with the

Licensed to Tricia Fu <tricia.fu@gmail.com>

16 CHAPTER 1 Why Hibernate?
Event, you must also convert and persist these associations, maintain-
ing their link to the parent Event. Some of the objects in the graph may
already exist in the database, but other new objects may have been
added to the graph. How can you determine which objects in the graph
should be inserted and which should be updated?

You can usually determine the operation to execute by examining the
object’s id property. If the ID type is an object, such as a Long or Inte-
ger, you can assume that the object is transient and hasn’t yet been per-
sisted if the ID’s value is null. If the ID type is a primitive, such as int
or long, a value of 0 indicates a transient object. (Recall that ints and
longs are initialized to 0.) In both cases, a SQL INSERT should be
issued after converting the object to a relational format. Otherwise, an
UPDATE would be issued for the object, keyed on the value of the ID.

At what point is the value of the id property assigned? If the database
supports identity columns or sequences, you can let the database assign
the ID value. Alternatively, you can have the application assign the ID
value, but this must be handled carefully. Application-managed iden-
tity generators must ensure that the generator is thread-safe, is effi-
cient, and won’t deadlock under heavy load. For the examples in this
book, we use database-generated identifier values.

Let’s examine this process with an example of persisting an object
graph. Start by creating a new graph, shown in listing 1.2.

Listing 1.2 Creating a new object graph

package com.manning.hq.ch01;

import java.util.ArrayList;
import java.util.List;

public class Example2 {

 private Event event = null;
 private List speakers = null;

 public static void main(String[] args) {

 Example2 app = new Example2();

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using direct JDBC 17
 app.doMain(args);
 }

 private void doMain(String[] args) {
 // Create the Event instance
 event = createEvent();
 // Create two Speaker instances
 speakers = createSpeakers();
 // and add them to the Event
 event.setSpeakers(speakers);
 }

 private Event createEvent() {
 Event event = new Event();
 event.setName("Opening Presentation");
 // ... set date and duration
 return event;
 }

 private List createSpeakers() {
 List speakers = new ArrayList();
 Speaker speaker0 = new Speaker();
 Speaker speaker1 = new Speaker();
 // ... set properties for speakers
 speakers.add(speaker0);
 speakers.add(speaker1);
 return speakers;
 }
}

When persisting the object graph, you first need to save the Event
instance and retrieve the created ID value from the database. This new
ID value is used as the foreign key for each of the associated objects—
the Speaker instances—when they’re persisted.

Although cumbersome, this method works as long as the object graph
is persisted from the parent to the children. This is referred to as a
cascading save. If you add a new Location to the object graph, as in
listing 1.3, the direct JDBC persistence layer must specify that the
Location instance needs to be persisted before the Event to avoid a for-
eign key violation when the row is inserted into the events table.
Licensed to Tricia Fu <tricia.fu@gmail.com>

18 CHAPTER 1 Why Hibernate?
Listing 1.3 Setting a newly created Location for the Event

private Location location = null;

private void doMain(String[] args) {
 // Create location
 location = createLocation();
 // Create Event instance
 event = createEvent(location);
 // Create two Speaker instances
 speakers = createSpeakers();
 // and add them to the Event
 event.setSpeakers(speakers);
}

private Location createLocation() {
 Location location = new Location();
 location.setName("Grand Hyatt – Convention Room A");
 return location;
}

private Event createEvent(Location location) {
 Event event = new Event();
 event.setName("Opening Presentation");
 // Assign location to event
 event.setLocation(location);
 // Establish bi-directional association
 location.setEvent(event);
 // ... set date and duration
 return event;
}

A persistence layer implemented with direct JDBC must be able to
persist all or part of a complex object graph while avoiding foreign key
violations. Similar behavior is required when deleting objects and
object graphs from a relational database.

1.2.4 Deleting object graphs

Suppose that an Event has been cancelled and the associated data

should be removed from the database. The direct JDBC persistence

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using direct JDBC 19
layer must handle deleting not only the Event, but also the objects asso-
ciated to the Event, such as the Speakers and Attendees. The delete
operation should not cascade to the Location, however, since multiple
Events can be held at a given Location. Assuming that a Location
needs to be deleted, each of the corresponding Events held at the Loca-
tion should also be deleted, being careful to cascade to the child
objects of the Event.

Deleting, or making a persistent object transient, is the easiest persis-
tence operation when you’re using direct JDBC for application persis-
tence. Still, you must be careful to delete only the relevant objects from
the graph.

1.2.5 Querying object graphs

Although JDBC’s Statement and PreparedStatement classes provide
the ability to query a database, you must still write the SQL statement
and process the results. Most direct JDBC persistence layers have
some form of SQL generation for the objects in the domain model, but
it’s often incomplete and lacks the flexibility needed for an enterprise
application. The SQL generation component must also be updated as
the application matures and requirements change.

Executing a query with the Statement or PreparedStatement class
returns a ResultSet object containing the query results. The Result-
Set is essentially a list of key-value pairs. Each entry in the list repre-
sents one result row: The key is the column name, and the value is the
data returned.

Now that you have the results, how should you return the data to the
application? There are two options: You can convert the results either
into a list of Event objects or into a list of Map instances. The latter solu-
tion may seem more appealing because it’s easier to code (you can add
the properties as Map.Entry objects), but this method also introduces
some problems.

A plain old Java object (POJO), such as the Event object, support
primitive type properties, such as int, char, and boolean, as well as
Licensed to Tricia Fu <tricia.fu@gmail.com>

20 CHAPTER 1 Why Hibernate?
objects, such as String and Date. The Java Collections classes only
support objects. To return a list of Map instances, you would need to
convert each primitive type into its object representation.

By using Map instances, you also forfeit any behavior that the Event
class provides. Recall that a domain model contains both the data and
the behavior for the objects. Clearly, the benefit of the domain model is
lost if the Event instances aren’t used.

To return a list of Event instances from a ResultSet, you must convert
each result row into a corresponding Event instance. Data returned for
associated objects, like Location, must also be converted and set for the
Event. While this may not seem like a huge chore, writing code to con-
vert every object to and from a relational schema quickly becomes
tedious and error-prone.

There are clearly a number of open issues when persisting objects with
direct JDBC. You can certainly try to answer all of them, but this
results in a large number of classes, repetitive and complicated code, as
well as a huge time commitment in maintenance and testing.

Next, we’ll look at how to use Hibernate to overcome some of the
problems that JDBC presents.

After examining the shortcomings in our persistence techniques using
direct JDBC, let’s discuss the benefits of using Hibernate for applica-
tion persistence. Hibernate addresses all the shortcomings of the previ-
ous persistence methods and offers a number of additional features.
The core benefits of Hibernate are simplicity, flexibility, completeness,
and performance.

1.3.1 Simplicity and flexibility

Rather than the handful of classes and configuration properties

1.3 Persistence with Hibernate
required by some persistence solutions, such as EJBs, Hibernate

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persistence with Hibernate 21
requires a single runtime configuration file and one mapping docu-
ment for each application object to be persisted. The runtime config-
uration file can be a standard key-value properties file or an XML
file. Alternatively, you can configure the runtime portion of Hiber-
nate programmatically.

The XML-formatted mapping documents can be very short, leaving
the framework to determine the remainder of the mapping. Optionally,
you can provide the framework with more information by specifying
additional properties, such as an alternative column name for a prop-
erty. Listing 1.4 show the mapping document for the Event class.

Listing 1.4 Hibernate mapping document for the Event class

<?xml version="1.0"?>
<hibernate-mapping package="com.manning.hq.ch01">
 <class name="Event" table="events">
 <id name="id" column="uid" type="long">
 <generator class="native"/>
 </id>
 <property name="name" type="string"/>
 <property name="startDate" column="start_date"
 type="date"/>
 <property name="duration" type="integer"/>
 <many-to-one name="location" column="location_id"/>
 <set name="speakers">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
 </set>
 <set name="attendees">
 <key column="event_id"/>
 <one-to-many class="Attendee"/>
 </set>
 </class>
</hibernate-mapping>

Don’t worry if aspects of the mapping document are confusing. We’ll
cover this document in detail in chapters 2 and 3.
Licensed to Tricia Fu <tricia.fu@gmail.com>

22 CHAPTER 1 Why Hibernate?
To use some persistence frameworks, such as EJBs, your application
becomes dependent on that framework. Hibernate doesn’t create this
additional dependency. Persistent objects in your application don’t
have to inherit from a Hibernate class or obey specific semantics: You
simply create your Java objects and the associated mapping docu-
ments. Persisting the application objects is then left to Hibernate.

Also, unlike EJBs, Hibernate doesn’t require a special container in
order to function. Hibernate can be used in any application environ-
ment, from standalone applications to enterprise application servers.

In the next section, you’ll see that the functionality and ease provided
by Hibernate don’t come at the cost of limited support for object-
oriented features.

1.3.2 Completeness

Unlike most homegrown persistence layers, Hibernate supports the
full range of object-oriented features, including inheritance, custom
object types, and collections. Without support for these features, you
may be forced to alter the application domain model to meet the limita-
tions of the persistence layer. Hibernate frees you to create a domain
model without concern for persistence layer limitations.

Hibernate provides a SQL abstraction layer called the Hibernate
Query Language (HQL). HQL strongly resembles SQL, with object
property names taking the place of table columns. HQL has special
support for collections, object indexes, and named query parameters,
as shown in the following examples.

This query returns a List of String objects containing the names of the
Event instances in the database:

select e.name from Event e;

Note the e shorthand notation for query objects. Of course, you aren’t
limited to basic queries:

from Event e where size(e.speakers) > 2;
Licensed to Tricia Fu <tricia.fu@gmail.com>

Persistence with Hibernate 23
This time, we’re returning all Event instances with more than two
Speakers. The size(...) function requires a database that supports
subselects. You’ll notice that we didn’t need to include a SELECT clause.
(We’ll revisit this topic in chapter 6.) Let’s look at one more example:

select s from Event e join e.speakers s where e.id = :eventId;

Here, we’re selecting all the Speaker instances for a given Event ID.
The example in the previous listing demonstrates named queries.
Hibernate’s Query interface provides methods to populate named
parameters in addition to standard JDBC parameters. HQL state-
ments are compiled into database-specific SQL statements by the
Hibernate framework and cached for reuse. We cover HQL in detail in
chapter 6.

In the next section, we discuss a concern that most people have when
examining a new framework: performance.

1.3.3 Performance

A popular misconception is that ORM frameworks severely impact
application performance. This isn’t the case with Hibernate. The key
performance measure for an ORM framework is whether it performs
its tasks using the minimum number of database queries. This holds for
inserting and updating objects as well as retrieving them from the data-
base. Many hand-coded JDBC persistence frameworks update the
state of an object in the database even if the object’s state hasn’t
changed. Hibernate issues an update for an object only if its state has
actually changed.

Lazy collections provide another performance enhancement. Rather
than load collections of objects when the parent object is loaded, col-
lections are populated only when they’re accessed by the applica-
tion. Developers new to Hibernate often misunderstand this
powerful feature.

If you were using direct JDBC for persistence, you would need to
explicitly populate the collection of Speaker instances for an Event. This

would occur either when the object was initially loaded or from a

Licensed to Tricia Fu <tricia.fu@gmail.com>

24 CHAPTER 1 Why Hibernate?
separate call after the Event object was loaded. With Hibernate, you
just load the Event instance from the database. The collection of Speaker
instances is populated only when accessed. This ensures that you aren’t
retrieving unnecessary objects, which can severely impact performance.

Another performance-enhancing feature is the ability to selectively dis-
able which associated objects are retrieved when the primary object is
retrieved. This is accomplished by setting the outer-join property for
the association. For instance, let’s say you have a User class with a one-
to-one association to a Department class. When you’re retrieving a User
instance, you don’t always need the associated Department instance, so
you can declare that the object should be retrieved only when needed
by setting outer-join to false.

It’s also possible to declare proxies for objects, resulting in the objects
being populated only when accessed by the developer. When you
declare a proxy, Hibernate creates an unpopulated representation of
the persistent class. The proxy is replaced with the actual instance of
the persistent class only when you access the object by calling one of
its methods.

Proxies are related to the outer-join setting we just mentioned. Using
the same brief example, if the Department class is declared to have a
proxy, you don’t need to set the outer-join from the User to the
Department to false—the Hibernate service will only populate the
Department instance when needed.

Object caching also plays a large role in improving application perfor-
mance. Hibernate supports various open-source and commercial cach-
ing products. Caching can be enabled for a persistent class or for a
collection of persistent objects, such as the collection of Speaker
instances for an Event. (We’ll look at how to configure caches in chap-
ter 3.) Query results can also be cached, but doing so only benefits
queries that run with the same parameters. Query caching doesn’t sig-
nificantly benefit application performance, but the option is available
for appropriate cases.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 25
We’ve covered a lot of ground in this chapter. We introduced the con-
cepts of persistence and object/relational mapping as well as the prob-
lems that exist when you’re persisting objects to a relational database.
We also reviewed the shortcomings of using JDBC for persistence in
Java applications and introduced Hibernate as an alternative persis-
tence technique.

We started this chapter by introducing the object/relational impedance
mismatch. The mismatch occurs because of the fundamental differences
between the object and relational models. The three areas of the mis-
match we examined were identity, inheritance, and associations. The
impedance mismatch is solved to varying degrees by ORM frameworks.

Applications with basic persistence requirements typically use JDBC
because the API is simple and most developers are familiar with it.
However, JDBC requires application developers to write, maintain,
and test a great deal of repetitive code. JDBC doesn’t handle domain
objects directly, requiring you to map domain objects to relational
tables. This problem is further complicated as the domain model
increases in complexity.

Hibernate is designed to address the shortcomings in direct JDBC and
other ORM frameworks. Using Hibernate doesn’t require that your
domain objects implement specific interfaces or use an application
server. It supports collections, inheritance, and custom data types, as
well as a rich query language.

Throughout this book, we’ll introduce the core features of Hibernate as
well as how to build applications with Hibernate. But first, you have to
install it. The next chapter discusses installing Hibernate, Ant, and
MySQL so that you can begin using Hibernate immediately.

1.4 Summary
Licensed to Tricia Fu <tricia.fu@gmail.com>

2
Installing and building
projects with Ant

This chapter covers

• Getting and installing Hibernate

• Installing and learning the basics of Ant

• Setting up and testing MySQL

• Creating a basic project using Ant

ow that we’ve laid out the case why Hibernate is a useful tool for
developers, this chapter discusses how you can get the tools, set up a
project, and start persisting your Java objects. All nontrivial tools,

including open-source ones like Hibernate, have quite a few moving parts that
need to be set up in order to work correctly. Often the most difficult part of any
project is getting started—and if you’ve never set up a project that uses
Hibernate, figuring out where to start can be a bit overwhelming.

In this chapter, we’ll cover setting up three essential open-source tools:
Hibernate; MySQL, the most popular open-source database; and Ant,
the premier Java build tool. Ant isn’t strictly necessary for our example
project, but it can make life easier; not using it would be like coding with
one hand tied behind your back.

N

26

Licensed to Tricia Fu <tricia.fu@gmail.com>

27
Chapter goals

The main purpose of this chapter is to get you ready to start building
Hibernate projects. To achieve this, you’ll accomplish a few general
tasks by the close of the chapter:

❂ Find a copy of Hibernate and install it on your computer.
❂ Download and install Ant.
❂ Set up MySQL, which you’ll use as your database for the example

projects.
❂ Create a basic project using Ant, which will serve as a model for

more complex projects.

Accomplishing these goals will put you in a good position to explore
Hibernate’s concepts further in subsequent chapters. And as a side
bonus, you should also be able to set up a complete Hibernate project
from scratch.

Assumptions

To keep the scope of this chapter manageable, we’ll start by making a
few assumptions:

❂ You have a copy of Sun JDK installed already—preferably JDK
1.4.x, because Hibernate requires it for a few of its nice features. If
you don’t have Sun JDK, visit http://java.sun.com/j2se/ and follow
the instructions to download and install the JDK.

❂ You have configured the JAVA_HOME correctly to point where the
JDK has been installed.

❂ You haven’t installed Ant, Hibernate, or a database (MySQL)
before. This chapter is all about getting set up, so if you already
have or know how to install these systems, feel free to skim sections
or skip ahead to chapter 3. You may want to note where you’re
installing things, because examples will build on this information
later.

NOTE Most of the examples in this chapter involve running Ant and

MySQL from the command line. They should work roughly the

Licensed to Tricia Fu <tricia.fu@gmail.com>

28 CHAPTER 2 Installing and building projects with Ant
same on Windows, Unix, Linux, and Macintoshes. To avoid con-
fusion, all command-line fragments use a generic $ command
prompt (from Mac), rather than repeat the example for each plat-
form. So, when you see this

 $ ant clean build

it’s essentially the same as seeing

 C:\applications>ant clean build

When there are differences between the platforms, consult the
tool’s documentation for platform-specific considerations.

NOTE For paths, we typically use forward slashes (/) rather than the
Windows backslash (\) convention. If you’re using a Windows
system, reverse the slashes as needed.

The first step in creating your Hibernate project is to get the latest
copy from the website. Go to Hibernate’s homepage at www.hiber-
nate.org. There is wealth of information here, including solid reference
documentation, a mailing list, and an active community Wiki.1 For
now, you just want the code. Click the Download link from the menu,
and choose the latest 3.x version of the Hibernate distribution. Hiber-
nate distributions come in two flavors: .zip and the .tar.gz versions.

Choose the appropriate bundle for your platform (Windows users
probably want the .zip, and Linux/Unix users might prefer the .tar.gz).
Then select a mirror site near you, choosing from a list similar to that
displayed in figure 2.1.

While Hibernate is downloading, create an application directory where
you can unzip it. On Windows, create a c:\applications directory. On

2.1 Getting a Hibernate distribution

1 What’s a Wiki? Think of it as a massively multiplayer website where any visitor can read,
learn, and add their knowledge to the community. See http://c2.com/cgi/wiki?WikiWiki-

Web, the original Wiki, for more information.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Getting a Hibernate distribution 29
Linux\Unix, create /applications. Extract the Hibernate distribution
into that directory. On Windows, you’ll have c:\applications\hibernate-
3.0, as shown in figure 2.2.

Some of the highlights to note include hibernate3.jar, which contains
all the framework code; the /lib directory, which holds all the Hiber-
nate dependencies; and the /doc directory, which has the JavaDocs
and a copy of the reference documentation. For now, you have every-
thing you need from Hibernate, so let’s move on to the next task.

Figure 2.1 Select a mirror site for the Hibernate distribution.

Figure 2.2
Extracted Hibernate
distribution on Windows
Licensed to Tricia Fu <tricia.fu@gmail.com>

30 CHAPTER 2 Installing and building projects with Ant
Any software project needs to be able to reliably and repeatably com-
pile, package, and distribute its files. The steps that developers take to
put everything together are typically referred as a build process. Every
manual step that a developer has to perform to build the project is one
that will be invoked in the wrong order, be forgotten, or be known only
to a guy who is inconveniently out getting a root canal. To prevent
these manual missteps, you can turn to build tools, which let you auto-
mate the process. For Java projects, that tool is commonly Ant.

Since its creation, Ant has proven its worth on many diverse Java
projects and has become the de facto standard for Java build tools. So,
it’s a natural choice to help you build a new Hibernate project. First,
you need to get a copy of it.

2.2.1 Getting Ant

Ant’s homepage is located at http://ant.apache.org/. It’s hosted by the
Apache Software Foundation, which plays host to some of the most
popular open-source projects, including Apache HTTP Server. There
is a lot of useful information at this site, especially the excellent Ant
User’s Manual.2 To get Ant, click Binary Distributions from the left
menu. Scroll down, and choose the current release of Ant in .zip,
.tar.gz, or .tar.bz2 format. (At this time of this writing, the current ver-
sion is 1.6.2.) Save the file right next to the Hibernate download.

2.2.2 Extracting and installing Ant

After the download completes, extract Ant to your newly created appli-
cations directory. Ant is typically run as a command-line tool. To install
it, a few more configuration steps are needed. You need to define an

2.2 Installing Ant

2 In our opinion, the Ant User’s Manual (http://ant.apache.org/manual/index.html) is one of
the best examples of great documentation, which in many open-source projects tends to be
fairly poor. What makes it so useful is that in addition to displaying the available parameters

and tasks, it gives working examples for each task, which you can easily copy and modify.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Setting up a database 31
environment variable called ANT_HOME to point to Ant’s directory (set
ANT_HOME=/applications/apache-ant-1.6.2). Also, add the Ant bin
directory to your command-line path (on Windows XP, for example,
set PATH=%ANT_HOME%\bin;%PATH%).

If everything is set up correctly, you should be able to open a command
line and enter the ant command:

$ ant

Buildfile: build.xml does not exist!
Build failed

As you can see, Ant gives you an error message, because it expects a
build file called build.xml.

Once Ant is installed, you can start setting up your project, beginning
with an Ant build file (typically named build.xml). You’ll do this in sec-
tion 2.4. Before you start creating your project, you need a database.

Hibernate is all about seamlessly connecting your Java objects to a
database. By defining mapping files, it can automatically convert
objects into SQL statements to shuttle data back and forth between
live memory and the persistent file systems that databases typically use.

If you have spent any time working with SQL, you know that not all
databases are created equal. Although SQL is technically standardized,
every database vendor has its own slightly different version of “stan-
dard.” By using Hibernate, you can avoid writing vendor-specific
JDBC code. You can generally write applications that can be deployed
against any database, such as Oracle, MySQL, or SQL Server. As long
as you aren’t writing your own database engine, odds are pretty good
that Hibernate will work with it.

2.3 Setting up a database
Licensed to Tricia Fu <tricia.fu@gmail.com>

32 CHAPTER 2 Installing and building projects with Ant
For our example application, you’ll use MySQL—a popular open-
source database that many developers are already familiar with. You
need to take one caveat into consideration: MySQL versions 4.0 and
earlier don’t support subselects, which Hibernate uses for some que-
ries. You certainly can use older versions; you just need to write que-
ries a bit differently. To avoid this complication, this chapter’s example
uses MySQL 4.1, which supports subselects.

2.3.1 Getting MySQL

Installing MySQL can be a complicated procedure, so we’ll only cover
the basics of installing it on Windows. Complete documentation is
available at http://dev.mysql.com/doc/ for other databases. Happily,
installations are getting easier since MySQL 4.1.5; there is a Windows
installer that will handle most of the messy setup details and should
generally suit your needs.

Get a copy of MySQL 4.1 (or later) from http://dev.mysql.com/
downloads/. Select the 4.1 database server, choose the appropriate
binary version for your platform, and download it. Then, extract it to
a /applications/mysql directory. Run the installer, and follow along.
As part of the installation, choose to install MySQL as a Windows
service; doing so eliminates the need to manually start the server from
the command line.

In addition, if you have firewall software installed, such as Norton
Internet Security, you’ll need to configure the firewall to permit access
for outgoing connections from your local computer with IP address
127.0.0.1 (localhost) to your MySQL server at port 3306.

2.3.2 Testing MySQL

Let’s verify that MySQL is working:

1 Open another command line, and start the command-line console.
The console lets you interact with the MySQL server and run SQL
statements against it.
2 Change to the mysql/bin directory:

Licensed to Tricia Fu <tricia.fu@gmail.com>

Setting up a database 33
 $ cd applications/mysql/bin

Alternatively, you could add the /bin directory to the path, which
would allow you to run MySQL anywhere.

3 From the mysql/bin directory, log in as the root user, with complete
access privileges:
 $ mysql -u root –p

The -u option specifies the username, and -p tells MySQL to
request a password.

4 When MySQL asks for the password, you can press Enter, since
the default password is blank:
 Enter password:

The server will respond with
 Welcome to the MySQL monitor. Commands end with ; or \g.
 Your MySQL connection id is 35 to server version: 4.1.10-nt
 Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

5 To give Hibernate a database to work with, use SQL to create the
events_calendar database, like so:
 mysql> CREATE database events_calendar;

The server should respond with
 Query OK, 1 row affected (0.00 sec)

6 Verify that the database has been created by querying for a list of
databases:
 mysql> show databases;
 +-----------------+
 | Database |
 +-----------------+
 | events_calendar |
 | mysql |
 | test |
 +-----------------+
 3 rows in set (0.02 sec)

Sure enough, events_calendar is there, along with MySQL’s built-
in databases (mysql and test).
Licensed to Tricia Fu <tricia.fu@gmail.com>

34 CHAPTER 2 Installing and building projects with Ant
7 Quit the MySQL console by typing the following:
 mysql> quit;

The server responds with a pithy
 Bye

At this point you have successfully set up MySQL, installed it as a
Windows service, and verified that it’s running. Complete information
is included in the installation instructions at www.mysql.com. If you
had any problems along the way getting this to work, the installation
instructions are a good place to start to debug them.

2.3.3 MySQL drivers

In addition to needing a database server, in this case, you need to get
the JDBC driver. The driver is the piece of software that allows Java
code to access and send SQL commands to the database server.
Drivers are database-specific, but implement the necessary
javax.sql.Driver interface, which allows JDBC to remain ignorant of
which database it’s talking to. At its core, Hibernate is just a fancy
wrapper around JDBC, so you need the MySQL driver as well for
your project.

Go to http://dev.mysql.com/downloads/, and look for MySQL
Connector/J, which is the name of the driver (the current version is
3.1). Select the latest production release, and download the .zip file to
the /applications directory. Extract the .zip file into that directory; it
should end up in a directory named something like /applications/mysql-
connector-java-3.1.6 (depending on the version, of course). If you look
in that directory, you should see a JAR file named mysql-connector-
java-3.1.6-bin.jar, which contains the driver.

To help illustrate how to use Hibernate, you’ll build a sample applica-
tion—Event Calendar 2005, an event/calendar-planning program—
which can be used to create events, schedule speakers, and manage

2.4 Setting up a project
attendees.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Setting up a project 35
An event calendar program is a good candidate for a Hibernate appli-
cation for a number of reasons. Calendars and scheduling are common
pieces of many business applications, so this should be familiar terri-
tory for many readers. In addition, Hibernate shines when it’s applied
to a rich domain model. A realistic event application has to handle a
number of complex relationships, including conferences, lecture ses-
sions, hotels, room reservations, and guests.

Each chapter of this book expands the application a bit more, add-
ing new relationships with Hibernate. But before you develop any
code, you need to set up the project. Now that you have all the nec-
essary building blocks (Hibernate, Ant, and a MySQL database),
you can begin.

2.4.1 Defining directories

The first thing any successful project needs is a directory. Create it as
follows:

1 Create a directory, /work. This is a base directory where all your
future projects can go.

2 For now, you have one project to worry about: the new Event Cal-
endar application. So, create a /work/calendar directory. This is will
be referred to as the project directory from now on.

3 Create an src/java directory in the project directory. All the Java
sources files you create will go under this directory. It also leaves
room for other source files that aren’t .java files, like JSP, SQL, or
Hibernate mapping files (hbm.xml), which you’ll learn about in the
next chapter.

4 Open your favorite text editor or Integrated Development Environ-
ment (IDE)3, and create a file called build.xml in the project

3 Discussing the “right” IDE can be about as contentious as talking religion or politics at a
dinner party. That said, most of the modern IDEs have built-in support for Ant and even
plug-ins for Hibernate, and can make managing a project a bit easier. The authors’ favorites

include IDEA (www.intellij.com) and Eclipse (www.eclipse.org/).

Licensed to Tricia Fu <tricia.fu@gmail.com>

36 CHAPTER 2 Installing and building projects with Ant
directory. For the moment, leave the file empty. This will be the Ant
build file for your Event Calendar program.

Let’s do a quick check to be sure you’re on track. If all is well, you
should have a directory structure that looks like this.

/applications/apache-ant-1.6.2
/applications/hibernate-3.0
/applications/mysql
/applications/mysql-connector-java-3.1.6
/work

With your project directory set up, let’s go ahead and develop the Ant
build file.

2.4.2 Ant 101

Your first Ant build file won’t be too complicated, just enough to show
the basics of what it can do. You’re going to have it create a directory,
compile a Java class, and run that class. You’ll also learn about several
important Ant concepts, including targets, tasks, paths, and properties.

Typing everything will certainly build character, but you can also
download the book’s source code from www.manning.com/peak. Look
in the ch02 directory for a file name build.xml, and open it in your pre-
ferred text editor (see listing 2.1). Throughout the chapter, you’ll mod-
ify this file, and saving versions of it at various stages of development.

Listing 2.1 First Ant build file, build.xml

<?xml version="1.0"?>
<project name="build.xml" default="build">
 <property name="src.java.dir" location="src/java"/>
 <property name="build.classes.dir" location="build/classes"/>

 <path id="project.classpath">
 <pathelement location="${build.classes.dir}"/>
 </path>

Basic root element Defines reusable
properties

Defines classpath
 <target name="init" >
 <mkdir dir="${build.classes.dir}"/>

Task that creates
directory to compile to

Licensed to Tricia Fu <tricia.fu@gmail.com>

Setting up a project 37
 </target>
 <target name="compile" depends="init" >
 <javac srcdir="${src.java.dir}"

destdir="${build.classes.dir}">
 <include name="**/EventCalendar.java" />
 </javac>
 </target>
 <target name="build" depends="compile" >
 <java classname="com.manning.hq.ch02.EventCalendar"
failonerror=”true”>
 <classpath refid="project.classpath"/>
 </java>
 <echo>If you see this, it works!!!</echo>
 </target>
</project>

Since this may be the first build file you have seen, let’s discuss some of
the concepts Ant uses, in light of this example.

Projects

All well-formed XML files need a root element, and Ant is no different.
The basic element is <project>. The two attributes you see are name
and default. The name attribute is a descriptive name for your project
and can be anything. The default attribute sets the target that will be
invoked if you don’t specify one from the command line when you run
Ant. Here we want a target called build to be invoked:

<project name="build.xml" default="build">

Properties

Properties are Ant’s version of variables. Most projects define a num-
ber of properties (best kept organized together at the top of the
project) for directories or file names that are frequently used through-
out the file. Once you define a property, you can substitute its value
back again by using the ${property.name} syntax you see here:

<property name="src.java.dir" value="src/java"/>

Defining a property this way lets you use the property

Task that
compiles src files

Task that runs
compiled classes

What you
see if code
works
${src.java.dir} anywhere you might otherwise need to type out the

Licensed to Tricia Fu <tricia.fu@gmail.com>

38 CHAPTER 2 Installing and building projects with Ant
full directory path. The property is converted back into a relative
directory, /work/calendar/src/java. Relative directories like src/java are
always resolved relative to the location of the build.xml file. You
define two properties: one for your Java source files directory and
another for the directory to which you want your compiled Java .class
files to be sent.

Paths

Paths allow you to define a series of directories and/or JAR files that
tasks will use. Paths are generally used to define class paths for compil-
ing .java files or running .class files. Creating a <path> element with an
id attribute lets you reuse the same classpath several times. Here we
give the <path> element an id called project.classpath and point it at
our compiled .class file directory:

<path id="project.classpath">
 <pathelement location="${build.classes.dir}"/>
</path>

This path is simple—just one lonely directory by itself. When you start
to add more third-party JAR files (like Hibernate), and the classpath
becomes more complicated, its value will be apparent. Classpaths can
be tricky beasts to get right, and the fact that Ant helps manage their
complexities is worth the price of entry.

Targets

Targets are Ant’s public methods. They contain tasks, which you’ll
read about next. By dividing your build file into several targets, you
can make it more organized and readable. Targets can depend on other
targets, if you specify a depends attribute. When you invoke a target
before it executes, Ant invokes any targets that your target depends on.

In our file, note that the build target depends on the compile target,
which in turn depends on the init target. This is helpful because we
can type
$ ant build

Licensed to Tricia Fu <tricia.fu@gmail.com>

Setting up a project 39
Ant will execute the init, compile, and build targets, in that order.
This is also where the default attribute comes into play. Refer back to
the “Projects” section, where we talk about the default attribute. Since
we defined build as the default attribute, we can type

$ ant

Ant will call the same init, compile, and build targets again.

Tasks

If targets are Ant’s public methods, then tasks are its private methods
and statements. A build file uses several tasks, including the following:

❂ mkdir creates the ${build.classes.dir}. Since this directory con-
tains only derived files, you can easily delete the entire directory to
have a clean build.

❂ javac compiles Java files into .class files and places them into
${build.classes.dir}.

❂ java runs the compiled class files.
❂ echo is Ant’s version of System.out.println(). It writes a message

out to the command line.

Tasks tend to be simple in their basic usage, but there are quite a few
attributes you can configure if you want to get fancy. We recommend
you check out the Ant User’s Manual for complete details.

2.4.3 Running Ant

The build file is now complete, but one obvious piece is missing: the
actual EventCalendar class. Let’s create that now. In the src/java direc-
tory, create a new com/manning/hq/ch02 directory and then an Event-
Calendar.java file. No programming book would be complete without
the quintessential Hello World application; so as not to disappoint you,
here it is:

package com.manning.hq.ch02;
public class EventCalendar {

Licensed to Tricia Fu <tricia.fu@gmail.com>

40 CHAPTER 2 Installing and building projects with Ant
 public static void main(String[] args) {
 System.out.println("Welcome to Event Calendar 2005.");
 }
}

When it runs, your class welcomes prospective users to the Event
Calendar.

Now that you have all the necessary classes in place, you should run
the build file. At the command line, change directories so that you’re in
the same directory as the build.xml file. Type the following at the com-
mand line:

$ ant
Buildfile: build.xml

init:

compile:
 [javac] Compiling 1 source file to

C:\work\calendar\build\classes

build:
 [java] Welcome to Event Calendar 2005.
 [echo] If you see this, it works!!!

BUILD SUCCESSFUL
Total time: 2 seconds

If you have set everything up correctly, then you should see something
similar. If this is the first time you have seen output from Ant, take note
of the following:

❂ Since you didn’t supply the name of a build file, Ant implicitly used
build.xml, but it’s nice enough to remind you which file it’s using on
the first line of output.

❂ Although you never specified which target to invoke, Ant used the
project’s default attribute and invoked the build target.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Habits of highly effective build files 41
❂ As it executes each target, Ant states the name of that target. This is
why you see init:, compile:, and build:.

❂ Most of the tasks you defined log some of their own information.

When you look at the output of an Ant file, you aren’t really concerned
about the interesting prose you put into your <echo>s and Sys-
tem.out.printlns, since you just want to know that tasks were exe-
cuted and where Ant is putting the files. So, the most useful debugging
information is typically what you see from the javac task, where Ant is
resolving properties:

[javac] Compiling 1 source file C:\work\calendar\build\classes

This output tells you where Ant is dumping the compiled Java .class
files. Remember the build file, which specifies the destdir attribute
using an Ant property:

<javac destdir="${build.classes.dir}" />

One tricky thing to get right, as a build file grows in size, is making
sure all properties resolve correctly to the directory or file you thought
they would. In this case, by inspecting the output, you know that
${build.classes.dir} has been turned into /work/calendar/build/
classes at runtime.

You have created a basic build file and put it through its paces. In the
next section, you’ll expand on this example and update it to use a few
Hibernate files.

Creating an organized, consistent project structure takes a bit of
thought up front, but that work pays dividends later as the project
grows in size. As a tool, Ant gives you a great deal of flexibility in how
you can organize a project; but without structure, too much flexibility
can lead to overly complicated build files.

2.5 Habits of highly effective build files
Licensed to Tricia Fu <tricia.fu@gmail.com>

42 CHAPTER 2 Installing and building projects with Ant
Open-source projects are usually fast-moving targets, and new distri-
butions are released fairly often. An ideal project setup would let you
get the latest copy of Hibernate and easily compile and test your code
against the newest version.

As helpful as Ant is, one of the chief historical criticisms against it is
that there tends to be a lot of duplication between projects. Two
projects each have their own build files that basically perform the same
steps, just on different directories. For example, if you like Hibernate,
you’ll probably want to use it on your next project. Why rewrite (or,
nearly as bad, copy and paste) the build file from your last project? A
new feature of Ant 1.6.2 allows you to create a single build file, which
can be imported and reused between all your projects. One of this
book’s goals is to create a reusable build file that you can use on all
your future Hibernate projects.

2.5.1 Connecting Hibernate

So far, all you have done with Hibernate is download and install it.
Let’s put it to use in a project. You’re going to modify the build.xml file
so that all the Hibernate JAR files are in the classpath, along with a
few more embellishments.

Updating the build file

If you’re following the source code, to show the progress of each modi-
fication, you’ve sequentially numbered the build files in the source
code. If you want to run those (rather than modify your existing file),
type ant –f build2.xml to specify a file other than the default build.xml.
For now, open build.xml and make the modifications shown in
listing 2.2.

Listing 2.2 Updated build file (build2.xml)

<?xml version="1.0"?>
<project name="build2.xml" default="build">
 <property name="src.java.dir" value="src/java"/>
 <property name="build.classes.dir" value="build/classes"/>

Sets Hibernate
version B
 <property name="hibernate.version" value="3.0"/>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Habits of highly effective build files 43
 <property name="hibernate.lib.dir"
 location="/applications/hibernate-${hibernate.version}"

 />
 <path id="project.classpath">
 <pathelement location="${build.classes.dir}"/>
 </path>
 <path id="hibernate.lib.path"
 <fileset dir="${hibernate.lib.dir}/lib">
 <include name="**/*.jar"/>
 </fileset>
 <fileset dir="${hibernate.lib.dir}">
 <include name="hibernate3.jar"/>
 </fileset>
 </path>
 <target name="init" >
 <mkdir dir="${build.classes.dir}"/>
 </target>
 <target name="compile" depends="init" >
 <javac srcdir="${src.java.dir}"

destdir="${build.classes.dir}">
 <classpath refid="hibernate.lib.path"/>
 </javac>
 </target>
 <target name="build" depends="compile" >
 <java classname="com.manning.hq.ch02.EventCalendar2">
 <classpath refid="project.classpath"/>
 <classpath refid="hibernate.lib.path"/>
 </java>
 <echo>If you see this, it works!!!</echo>
 </target>
 <target name="clean">
 <delete dir="${build.classes.dir}"/>
 </target>
</project>

By parameterizing the version of Hibernate you’re using, you can eas-
ily install a new version of Hibernate. Just download the new version,
rename the directory to the exact version number (such as 3.0), and
update the hibernate.version property. Build your project, and make

CSets base directory where
Hibernate is installed

Defines classpath with
Hibernate and all its JARs

D

Adds Hibernate for compiling E

Uses new class F

Adds Hibernate
to run Java file

G

Adds self cleaning targetH

B

sure everything works. No need to copy lots of JAR files.

Licensed to Tricia Fu <tricia.fu@gmail.com>

44 CHAPTER 2 Installing and building projects with Ant
The hibernate.lib.dir shows a little more advanced usage of proper-
ties; part of the directory is static, with the version number as a
property.

Here you create a new path element that includes the hibernate3.jar
file and all the dependencies.

This code adds the Hibernate classpath when compiling.

Change the class you’re going to run to
com.manning.hq.ch02.EventCalendar2.

Here you add the Hibernate classpath when running the Java file.

This lets you clean up the build artifacts for a fresh build.

The improved Ant build file now constructs a classpath for Hibernate
and uses it for both compilation and running the Java class.

A sample class with Log4j

EventCalendar2 is a slightly modified version of the first class, Event-
Calendar, which uses a few classes from Hibernate and some of its
dependencies. The new class uses two dependencies: one from Hiber-
nate and another from a Hibernate dependency, log4j.jar. Let’s take a
quick look the newly modified class:

package com.manning.hq.ch02;

import org.hibernate.cfg.Configuration;
import org.apache.log4j.*;

public class EventCalendar2 {
 public static void main(String[] args) {
 BasicConfigurator.configure();
 Configuration configuration = new Configuration();
 Logger log = Logger.getLogger(EventCalendar2.class);

 log.warn("Welcome to Event Calendar v2 2005.");
 }

}

C

D

E

F

G

H

Configures Log4j logger

Uses a
Hibernate

dependency
Licensed to Tricia Fu <tricia.fu@gmail.com>

Habits of highly effective build files 45
There isn’t much happening here. You configure Log4j, an open-
source logging framework, to log messages to the command line. Then
you create a basic configuration for Hibernate (which you’ll learn
more about in the next chapter). This doesn’t accomplish much, but it’s
enough to ensure that if you haven’t correctly set up your classpath,
your file won’t compile or run. The org.hibernate.cfg.Configuration
class comes from the Hibernate3.jar file, and the org.apache.log4j.*
classes comes from the log4j.jar file, which is in the hibernate/lib direc-
tory. Finally, you use your obtained Log4j logger to log a success mes-
sage to console. This ensures that you have both sets of JAR files in
the classpath.

Now you can run your new build file. You should see this:

$ ant –f build2.xml clean build
Buildfile: build2.xml

init:

compile:
 [java] 0 [main] INFO org.hibernate.cfg.Environment - Hibernate

3.0.3
 [java] 15 [main] INFO org.hibernate.cfg.Environment -

hibernate.properties not found
 [java] 15 [main] INFO org.hibernate.cfg.Environment - using

CGLIB reflection optimizer
 [java] 15 [main] INFO org.hibernate.cfg.Environment - using

JDK 1.4 java.sql.Timestamp handling
 [java] 31 [main] WARN com.manning.hq.ch02.EventCalendar2 -

Welcome to Event Calendar v2 2005.
 [echo] If you see this, it works!!!

BUILD SUCCESSFUL
Total time: 2 seconds

At the command line, you ran two targets from the build file. The clean
target deletes the build/classes directory, to start with a fresh empty
build/classes directory. Both your EventCalendar and EventCalender2

files are compiled successfully. Ant then runs the EventCalendar2 Java

Licensed to Tricia Fu <tricia.fu@gmail.com>

46 CHAPTER 2 Installing and building projects with Ant
class. The “Welcome to Event Calendar” message you see confirms
that you have successfully configured Hibernate.

2.5.2 Reusable build files

Now that you have connected Hibernate into your build file, you
have something you can use to demonstrate Ant’s reusable import
feature. The build file includes two reusable pieces: fileset and path
elements that define where Hibernate is installed. They look through
the installed Hibernate directory and define where the needed JAR
files are. You should extract these fragments into a reusable build
file, which can be used on other projects. Later, if you upgrade to a
new version of Hibernate, you can easily extract the new versions,
point your build.xml at the new Hibernate directory, and everything
should go.

The next step is to create a new file, hibernate-build.xml, which will be
the base for your reusable build file. You’ll extract the hiber-

nate.lib.path element from the build2.xml file and move it to hiber-
nate-build.xml (listing 2.3).

Listing 2.3 hibernate-build.xml: Defines a generic classpath for any
Hibernate installation

<?xml version="1.0"?>
<project name="hibernate-build" default="default">
 <path id="hibernate.lib.path">
 <fileset dir="${hibernate.lib.dir}\lib">
 <include name="**/*.jar"/>
 </fileset>
 <fileset dir="${hibernate.lib.dir}">
 <include name="hibernate3.jar"/>
 </fileset>
 </path>
 <target name="default"/>
</project>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Habits of highly effective build files 47
This file is a complete build file in its own right. Starting from an exter-
nally specified directory, ${hibernate.lib.dir}, it builds the classpath.
This allows hibernate-build.xml to be imported into a project, which
can specify where Hibernate is installed, and can use the path as if it
was part of the project build file. Next, modify your build.xml file to
import the hibernate-build.xml file (see listing 2.4).

Listing 2.4 build3.xml: Refactored build file imports a classpath from
hibernate-build.xml

<?xml version="1.0"?>
<project name="build3.xml" default="build">

 <property name="src.java.dir" value="src/java"/>
 <property name="build.classes.dir" value="build/classes"/>
 <property name="hibernate.version" value="3.0"/>
 <property name="hibernate.lib.dir" location=" /applications/

hibernate-${hibernate.version}"/>

 <import file="hibernate-build.xml" />

 <path id="project.classpath">
 <pathelement location="${build.classes.dir}"/>
 </path>

 <target name="clean">
 <delete dir="${build.classes.dir}"/>
 </target>
 <!—Other targets omitted -->
</project>

The new line is the import task, which replaces the path statement in
build2.xml. It pulls the hibernate-build.xml file directly into build.xml.
As far as Ant is concerned, hibernate.lib.path is still defined, and the
build file should work. Test this by running the new file:

$ ant –f build3.xml clean build
Buildfile: build3.xml

init:

Replaces path with import
Licensed to Tricia Fu <tricia.fu@gmail.com>

48 CHAPTER 2 Installing and building projects with Ant
compile:

build:
 [java] Welcome to Event Calendar v2 2005.
 [echo] If you see this, it works!!!

BUILD SUCCESSFUL
Total time: 1 second

Running the newly modified file successfully should give you some-
thing like this output. It runs the javac and java tasks, which rely on
hibernate.lib.path being configured correctly.

But what if the file doesn’t work? If you see something like the follow-
ing, it means the import isn’t configured correctly.

compile:
 [javac] Compiling 2 source files to

C:\work\calendar\build\classes

BUILD FAILED
C:\work\calendar\build.xml:21: Reference hibernate.lib.path not
found.

Double-check to see whether you have imported the hibernate-
build.xml file and that the build file has hibernate.lib.path configured.

2.5.3 Expanding your horizons

This section has only discussed some of the basics of how Ant works,
demonstrating a basic build file. This should be enough information to
get you started, and there are quite a few useful things you can do with
it. Be sure to check the Ant User’s Manual (specifically, the Ant Core
tasks), where you can learn more about specifics of tasks like import
and javac.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 49
In this chapter, we looked at the necessary steps to setup a Hibernate
project, including obtaining Hibernate itself, MySQL database, and
Ant build tool. Hibernate is distributed in a big zip file; it includes
documentation (if you read that sort of thing), source code, and JAR
files, including the essential hibernate3.jar and all the JAR files
Hibernate depends on. For more information, you can find the Hiber-
nate homepage at www.hibernate.org; it includes the User’s Manual
and the community area, both of which are useful sources of Hiber-
nate wisdom.

Ant is a build tool written in Java. It allows developers to build repeat-
able projects on any platform. Its home is at http://ant.apache.org. Ant
uses XML files to define the steps in a build process. The default name
is build.xml. As of Ant 1.6, build files can be made modular and reus-
able between projects.

Hibernate can generally work with most databases, including MySQL,
as long as they have a JDBC driver. MySQL is the most popular
open-source database and can be found at www.mysql.com.

2.6 Summary
Licensed to Tricia Fu <tricia.fu@gmail.com>

3
Hibernate basics

This chapter covers

• Configuring Hibernate

• Mapping persistent classes

• Advanced Hibernate configuration

s a persistence service, Hibernate must work with multiple databases and
within various application environments. Supporting these variations
requires Hibernate to be highly configurable to adapt to different

environments. After all, running a standalone application can be quite different
from running a web application. Differences in obtaining database connections,
for instance, can be significant. Hibernate is typically configured in two steps.

First, you configure the Hibernate service. This includes database con-
nection parameters, caching, and the collection of persistent classes man-
aged by Hibernate. Second, you must provide Hibernate with
information about the classes to be persisted. Persistent class configura-
tion allows you to bridge gaps between the class and databases.

Although it’s commonly used within J2EE application servers, such as
WebSphere and JBoss, Hibernate can also be used in standalone applica-
tions. Requirements vary for different environments, and Hibernate can

A

50

be configured to adapt to them. Hibernate works with various support

Licensed to Tricia Fu <tricia.fu@gmail.com>

Configuring Hibernate 51
services, such as connection pools, caching services, and transaction
managers. It also lets you maintain additional support services by
implementing simple interfaces.

Individual persistent classes are also highly configurable. Each class
may have a different method to generate identifier values, and it’s pos-
sible to persist complex object hierarchies. You can also customize spe-
cific object properties mapping to a SQL type, depending on the data
types available in the database. There is much more to configuring per-
sistent classes, as we’ll discuss in this chapter.

Chapter goals

In this chapter, we’ll cover configuring Hibernate at the framework
and persistent class level. More specifically, we’ll discuss the following:

❂ Creating a basic hibernate.cfg.xml file
❂ Building mapping definition files to provide Hibernate with infor-

mation about persistent classes
❂ The primary Hibernate classes used to persist and retrieve classes
❂ Advanced Hibernate configuration, including object caching and

transaction management
❂ Persisting class hierarchies (inheritance) with Hibernate

Assumptions

This chapter requires that you’ve completed these steps outlined in
chapter 2:

❂ Ant, Hibernate, and MySQL are installed correctly.
❂ The basic project from chapter 2 is installed.

In addition, you’re required to have basic knowledge of XML for the
configuration file and mapping documents.

Hibernate must peacefully coexist in various deployment environ-

3.1 Configuring Hibernate
ments, from application servers to standalone applications. We refer to

Licensed to Tricia Fu <tricia.fu@gmail.com>

52 CHAPTER 3 Hibernate basics
these as managed and nonmanaged environments, respectively. An
application server is an example of a managed environment, providing
services to hosted applications like connection pools and transaction
management. Two of the commonly used application servers include
WebSphere and JBoss.

The alternative is a nonmanaged environment, in which the applica-
tion provides any required services. Nonmanaged environments typi-
cally lack the convenience services found in managed environments.
A standalone Swing or SWT application is an example of a nonman-
aged environment.

Hibernate supports a number of different configuration methods and
options to support these scenarios. Configuring all of Hibernate’s prop-
erties can be overwhelming, so we’ll start slowly. Before we jump into
configuration, look at figure 3.1, which shows the major Hibernate
classes and configuration files.

The light gray boxes in the figure are the classes your application code
will use most often. The dark gray boxes are the configuration files
used by the Configuration class to create the SessionFactory, which in
turn creates the Session instances. Session instances are your primary
interface to the Hibernate persistence service.

Let’s begin with the basic configuration that can be used in any
Hibernate deployment. We’ll discuss advanced configuration later in
this chapter.

Transaction Query Application Code

Session

SessionFactory

Configuration

hibernate.cfg.xml hibernate.properties mapping files
Figure 3.1 Primary Hibernate components

Licensed to Tricia Fu <tricia.fu@gmail.com>

Configuring Hibernate 53
3.1.1 Basic configuration

Hibernate provides two alternative configuration files: a standard Java
properties file called hibernate.properties and an XML formatted file
called hibernate.cfg.xml. We’ll use the XML configuration file through-
out this book, but it’s important to realize that both configuration files
perform the same function: configuring the Hibernate service. If both
the hibernate.properties and hibernate.cfg.xml files are found in the
application classpath, then hibernate.cfg.xml overrides the settings
found in the hibernate.properties file. (Actually, we use both files in the
example source code to avoid putting the database connection informa-
tion throughout the project directory tree.)

Before configuring Hibernate, you should first determine how the ser-
vice obtains database connections. Database connections may be pro-
vided by the Hibernate framework or from a JNDI DataSource. A
third method, user-provided JDBC connections, is also available, but
it’s rarely used.

Using Hibernate-managed JDBC connections

The sample configuration file in listing 3.1 uses Hibernate-managed
JDBC connections. You would typically encounter this configuration
in a nonmanaged environment, such as a standalone application.

Listing 3.1 Example hibernate.cfg.xml file

<?xml version="1.0"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-

3.0.dtd">

<hibernate-configuration>
 <session-factory>
 <property name="connection.username">uid</property>
 <property name="connection.password">pwd</property>
 <property name="connection.url">
 jdbc:mysql://localhost/db
 </property>

 <property name="connection.driver_class">
 com.mysql.jdbc.Driver

Licensed to Tricia Fu <tricia.fu@gmail.com>

54 CHAPTER 3 Hibernate basics
 </property>
 <property name="dialect">
 org.hibernate.dialect.MySQLDialect
 </property>
 <mapping resource="com/manning/hq/ch03/Event.hbm.xml"/>
 <mapping resource="com/manning/hq/ch03/Location.hbm.xml"/>
 <mapping resource="com/manning/hq/ch03/Speaker.hbm.xml"/>
 <mapping resource="com/manning/hq/ch03/Attendee.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

To use Hibernate-provided JDBC connections, the configuration file
requires the following five properties:

❂ connection.driver_class—The JDBC connection class for the
specific database

❂ connection.url—The full JDBC URL to the database
❂ connection.username—The username used to connect to the data-

base
❂ connection.password—The password used to authenticate the user-

name
❂ dialect—The name of the SQL dialect for the database

The connection properties are common to any Java developer who has
worked with JDBC in the past. Since you’re not specifying a connec-
tion pool, which we cover later in this chapter, Hibernate uses its own
rudimentary connection-pooling mechanism. The internal pool is fine
for basic testing, but you shouldn’t use it in production.

The dialect property tells Hibernate which SQL dialect to use for cer-
tain operations. Although not strictly required, it should be used to
ensure Hibernate Query Language (HQL) statements are correctly
converted into the proper SQL dialect for the underlying database.

The dialect property tells the framework whether the given database
supports identity columns, altering relational tables, and unique
indexes, among other database-specific details. Hibernate ships with
Licensed to Tricia Fu <tricia.fu@gmail.com>

Configuring Hibernate 55
more than 20 SQL dialects, supporting each of the major database ven-
dors, including Oracle, DB2, MySQL, and PostgreSQL.

Hibernate also needs to know the location and names of the mapping
files describing the persistent classes. The mapping element provides the
name of each mapping file as well as its location relative to the applica-
tion classpath. There are different methods of configuring the location
of the mapping file, which we’ll examine later.

Using a JNDI DataSource

To use Hibernate with database connections provided by a JNDI
DataSource, you need to make a few changes to the configuration file,
as shown in listing 3.2.

Listing 3.2 Modified hibernate.cfg.xml file

<?xml version="1.0"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-

3.0.dtd">

<hibernate-configuration>
 <session-factory
 name="java:comp/env/hibernate/SessionFactory">
 <property name="connection.datasource">
 jdbc/myDataSource
 </property>
 <property name="dialect">
 org.hibernate.dialect.MySQLDialect
 </property>
 <mapping resource="com/manning/hq/ch03/Event.hbm.xml"/>
 <mapping resource="com/manning/hq/ch03/Location.hbm.xml"/>
 <mapping resource="com/manning/hq/ch03/Speaker.hbm.xml"/>
 <mapping resource="com/manning/hq/ch03/Attendee.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

You would typically use this type of configuration when using Hiber-

Sets JNDI name
of SessionFactory

Specifies name of
JNDI DataSource
nate with an application server. The connection.datasource property

Licensed to Tricia Fu <tricia.fu@gmail.com>

56 CHAPTER 3 Hibernate basics
must have the same value as the JNDI DataSource name used in the
application server configuration. The dialect property serves the same
purpose as the previous configuration file example.

At this point, you have almost enough information to configure Hiber-
nate. The next step is to create mapping definitions for the objects you
intend to persist.

Mapping definitions, also called mapping documents, are used to pro-
vide Hibernate with information to persist objects to a relational data-
base. The mapping files also provide support features, such as creating
the database schema from a collection of mapping files.

Mapping definitions for persistent objects may be stored together in a
single mapping file. Alternatively, the definition for each object can be
stored in an individual mapping file. The latter approach is preferred,
since storing the definitions for a large number of persistent classes in
one mapping file can be cumbersome. We use the file-per-class method
to organize our mapping documents throughout this book.

There is another advantage to having multiple mapping files: If you
have all mapping definitions in a single file, it may be hard to debug
and isolate any error to a specific class definition.

The naming convention for mapping files is to use the name of the per-
sistent class with the hbm.xml extension. The mapping file for the
Event class is thus Event.hbm.xml. The Event.hbm.xml file is shown in
listing 3.3.

Listing 3.3 The Event.hbm.xml mapping file

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="com.manning.hq.ch03">

3.2 Creating mapping definitions
 <class name="Event" table="events">

Licensed to Tricia Fu <tricia.fu@gmail.com>

Creating mapping definitions 57
 <id name="id" column="uid" type="long" unsaved-
value="null">

 <generator class="native"/>
 </id>
 <property name="name" type="string" length="100"/>
 <property name="startDate" column="start_date"
 type="date"/>
 <property name="duration" type="integer"/>
 <many-to-one name="location" column="location_id"
 class="Location"/>
 <set name="speakers">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
 </set>
 <set name="attendees">
 <key column="event_id"/>
 <one-to-many class="Attendee"/>
 </set>
 </class>
</hibernate-mapping>

Let’s examine this mapping file in detail. The mapping definition
starts with the hibernate-mapping element. The package attribute sets
the default package for unqualified class names in the mapping. With
this attribute set, you need only give the class name for other persis-
tent classes listed in the mapping file, such as the Speaker and
Attendee classes. To refer to a persistent class outside the given pack-
age, you must provide the fully qualified class name within the map-
ping document.

If Hibernate has trouble locating a class because of a missing package
on, for instance, a many-to-one element, Hibernate throws a Map-
pingException. This doesn’t mean that Hibernate can’t find the actual
class file, but that it isn’t able to navigate from one mapping definition
to another.

Immediately after the hibernate-mapping tag, you encounter the class
tag. The class tag begins the mapping definition for a specific persis-

tent class. The table attribute names the relational table used to store

Licensed to Tricia Fu <tricia.fu@gmail.com>

58 CHAPTER 3 Hibernate basics
the state of the object. The class element has a number of attributes
available, altering how Hibernate persists instances of the class.
(Appendix contains all the elements and attributes for each element
available in a mapping document.)

3.2.1 IDs and generators

The id element describes the primary key for the persistent class as
well as how the key value is generated. Each persistent class must have
an id element declaring the primary key for the relational table. Let’s
look at the id element:

<id name="id" column="uid" type="long" unsaved-value="null">
 <generator class="native"/>
</id>

The name attribute defines the property in your persistent class that will
be used to store the primary key value. The id element implies that the
Event class has a property also named id:

public Long getId() {
 return this.id;
}

public void setId(Long id) {
 this.id = id;
}

If the column for the primary key has a different name than your object
property, the column attribute is used. For our example’s purposes, this
column name is uid. The values of the type and unsaved-value
attributes depend on the generator used.

The generator creates the primary key value for the persistent class.
Hibernate provides multiple generator implementations that use vari-
ous methods to create primary key values. Some implementations
increment a value stored in a shared database table, whereas others

create hexadecimal strings. Another generator, called assigned, lets

Licensed to Tricia Fu <tricia.fu@gmail.com>

Creating mapping definitions 59
you generate and assign the object ID. The assigned generator allows
applications to reuse legacy code, such as the UUID generator from an
EJB application. A recent introduction is the select generator, which
retrieves the primary key value by selecting a value from a database
trigger. The generator type you choose determines its behavior based
on the underlying database.

You’ve used the native generator class in mapping definitions. native
generators provide portability for mapping documents since the
framework can determine the generator method supported by the
database. Generators using the native class will use identity or
sequence columns depending on available database support. If neither
method is supported, the native generator falls back to a high/low
generator method to create unique primary key values. Databases
supporting identity columns include Sybase, MySQL, Microsoft SQL
Server, and IBM DB2. Oracle, PostgreSQL, and SAP DB support
sequence columns.

The native generator returns a short, integer, or long value. You’ve
set the type attribute to long, and the id property in the Event object
has a type of java.lang.Long. The value of the type attribute and the
property type in the object must be the same.

The unsaved-value attribute describes the value of the id property for
transient instances of this class. The unsaved-value attribute affects
how objects are stored. We’ll discuss the impact of this attribute later in
the chapter.

3.2.2 Properties

Property elements for the Event object are similar to the id element:

<property name="name" type="string" length="100"/>
<property name="startDate" column="start_date" type="date"/>
<property name="duration" type="integer"/>

Each property element corresponds to a property in the Event object.

The name attribute contains the property name, whereas the type

Licensed to Tricia Fu <tricia.fu@gmail.com>

60 CHAPTER 3 Hibernate basics
attribute specifies the property object type. The column used to store
the property value defaults to the property name. The column attribute
overrides this default behavior, as shown in the startDate property.

If the type attribute is omitted, Hibernate determines the type using
runtime reflection. In certain cases, you must provide the property
type, since reflection may not be able to determine the desired type
(such as differentiating between the Hibernate DATE and TIMESTAMP
types). Valid property types include the Hibernate basic types, such as
integer, string, and timestamp, as well as the corresponding Java
objects and primitives. However, you aren’t limited to basic data types.

The property element may also contain the name of a serializable Java
class or a user-defined type. You create a new user-defined type by
implementing either the org.hibernate.UserType or org.hibernate.
CompositeUserType interface. The fully qualified class name of the user
type or the serializable Java class is used as the property type value.
We explore custom user types in chapter 5.

3.2.3 Many-to-one element

The many-to-one element defines the association to the Location class.
In chapter 1, we referred to this association as one-to-one—why did we
call this association a many-to-one instead? Hibernate classifies one-to-
one associations as two objects sharing the same primary key. One-to-
one associations aren’t often used with Hibernate, so we won’t cover
them in detail. Many-to-one associations use foreign keys to maintain
the association between two persistent classes. Let’s examine many-to-
one associations using the association shown in figure 3.2.

From this figure, you can deduce that many Event instances are associ-
ated with a single Location instance. Although the figure doesn’t
display it, this association is unidirectional, meaning you can navigate

*

Location Event
Figure 3.2
Association between

Location and Event

Licensed to Tricia Fu <tricia.fu@gmail.com>

Creating mapping definitions 61
from the Event instance to the Location but not from the Location to
the Event instance. At this point, it’s worthwhile to present the map-
ping file for the Location class, shown in listing 3.4.

Listing 3.4 Location.hbm.xml

<?xml version="1.0"?>
<hibernate-mapping package="com.manning.hq.ch03">
 <class name="Location" table="locations">
 <id name="id" column="uid" type="long">
 <generator class="native"/>
 </id>
 <property name="name" type="string"/>
 <property name="address" type="string"/>
 </class>
</hibernate-mapping>

The mapping for the Location class is similar to the Event mapping,
although it doesn’t have as many properties and lacks associations to
other persistent objects. The association from Event to Location is a
simple object reference.

For the Event mapping, the many-to-one element defines object refer-
ences between persistent objects. Mapping a many-to-one association
is straightforward:

<many-to-one name="location" column="location_id" class="Location"/>

The name attribute gives the name of the property in the object, and the
optional column attribute specifies the column used to store the foreign
key to the locations table. If you don’t give a column attribute, the name
attribute is used as the column name. The class attribute names the
associated persistent class. Remember that you don’t need to give the
fully qualified name of the Location class if it’s in the package defined
in the hibernate-mapping element.

A common question from developers new to Hibernate is how to make
a many-to-one relationship lazy, meaning that the associated object
won’t be retrieved when the parent object is retrieved. The solution is

to use proxied objects.

Licensed to Tricia Fu <tricia.fu@gmail.com>

62 CHAPTER 3 Hibernate basics
3.2.4 Proxies

An object proxy is just a way to avoid retrieving an object until you
need it. Hibernate 2 does not proxy objects by default. However, expe-
rience has shown that using object proxies is preferred, so this is the
default in Hibernate 3.

Object proxies can be defined in one of two ways. First, you can add a
proxy attribute to the class element. You can either specify a different
class or use the persistent class as the proxy. For example:

<class name="Location"
proxy="com.manning.hq.ch03.Location"...>...
</class>

The second method is to use the lazy attribute. Setting lazy="true" is a
shorthand way of defining the persistent class as the proxy. Let’s
assume the Location class is defined as lazy:

<class name="Location" lazy="true"...>...</class>

The lazy attribute is true by default in Hibernate 3. An easy way to
disable all proxies, including lazy collections, is to set the default-lazy
attribute to true in the hibernate-mapping element for a given mapping
file. Let’s look at an example of using a proxied Location instance:

Session session = factory.openSession();
Event ev = (Event) session.load(Event.class, myEventId);
Location loc = ev.getLocation();
String name = loc.getName();
session.close();

The returned Location instance is a proxy. Hibernate populates the
Location instance when getName() is called.

You’ll be dealing with a proxy of Location generated by CGLIB until
you call an instance method.1 What happens when you retrieve the

1 CGLIB is a code generation library used by Hibernate. You can find out more about it at

http://cglib.sourceforge.net/.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Creating mapping definitions 63
Event instance from the database? All the properties for the Event are
retrieved, along with the ID of the associated Location instance. The
generated SQL looks something like this:

select event0_.id as id0_, event0_.name as name0_,
➥ event0_.location_id as location_id0_ from events event0_
➥ where event0_.id=?

When you call loc.getName(), the following generated SQL is exe-
cuted:

select location0_.id as id0_ as id0_, location0_.name as name0_
➥ from locations location0_ where location0_.id=?

If you’ve guessed that you can call loc.getId() without invoking a call
to the database, you’re correct. The proxied object already contains the
ID value, so it can be safely accessed without retrieving the full object
from the database.

Next, we’ll look at collections of persistent objects. Like proxies, col-
lections can also be lazily populated.

3.2.5 Collections

The mapping file defines the collections for Speakers and Attendees.
Since the two collections are essentially the same, we’re just going to
look at the Speaker collection here. The collections are defined as sets,
meaning Hibernate manages the collections with the same semantics as
a java.util.Set:

<set name="speakers">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</set>

This definition declares that the Event class has a property named
speakers, and that it’s a Set containing instances of the Speaker class.

The Event class has the corresponding property:

Licensed to Tricia Fu <tricia.fu@gmail.com>

64 CHAPTER 3 Hibernate basics
public class Event {
 private Set speakers;
 ...

 public void setSpeakers(Set speakers) {
 This.speakers = speakers;
 }

 public Set getSpeakers() {
 return this.speakers;
 }
 ...
}

The key element defines the foreign key from the collection table to the
parent table. In this case, the speakers table has an event_id column
referring to the id column in the events table. The one-to-many ele-
ment defines the association to the Speaker class.

We’ve only touched on persisting collections with Hibernate. In addi-
tion to Sets, Hibernate also supports persistent Maps and Lists, as well
as arrays of objects and primitive values. Persistent collections are cov-
ered in detail in chapter 5.

Let’s take a quick break from discussing Hibernate’s persis-
tence features and discuss a matter of practice: the location of
mapping files. After you create mapping files for each persistent
class, where should they be stored so the application can access
them? Ideally, mapping files should be stored in the same JAR
file as the classes they describe. Suppose the class file for the
Event object is stored in the com/manning/hq directory and
therefore in the com.manning.hq package. The Event.hbm.xml
file should also be stored in the com/manning/hq directory inside
the JAR archive.

3.2.6 Cascades

If you’ve worked with relational databases, you’ve no doubt encoun-

ORGANIZING
YOUR

MAPPING
FILES
tered cascades. Cascades propagate certain operations on a table (such

Licensed to Tricia Fu <tricia.fu@gmail.com>

Creating mapping definitions 65
as a delete) to associated tables. (Remember that tables are associated
through the use of foreign keys.) Suppose that when you delete an
Event, you also want to delete each of the Speaker instances associated
with the Event. Instead of having the application code perform the
deletion, Hibernate can manage it for you.

Hibernate supports ten different types of cascades that can be applied
to many-to-one associations as well as collections. The default cascade
is none. Each cascade strategy specifies the operation or operations that
should be propagated to child entities. The cascade types that you are
most likely to use are the following:

❂ all—All operations are passed to child entities: save, update, and
delete.

❂ save-update—Save and update (INSERT and UPDATE, respectively)
are passed to child entities.

❂ delete—Deletion operations are passed to child entities.
❂ delete-orphan—All operations are passed to child entities, and

objects no longer associated with the parent object are deleted.

The cascade element is added to the desired many-to-one or collection
element. For example, the following configuration instructs Hibernate
to delete the child Speaker elements when the parent Event is deleted:

<set name="speakers" cascade="delete">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</set>

That’s all there is to configuring cascades. It’s important to note that
Hibernate doesn’t pass the cascade off to the database. Instead, the
Hibernate service manages the cascades internally. This is necessary
because Hibernate has to know exactly which objects are saved,
updated, and deleted.

With the configuration and mapping files in hand, you’re ready to per-

sist objects to the database with Hibernate.

Licensed to Tricia Fu <tricia.fu@gmail.com>

66 CHAPTER 3 Hibernate basics
3.2.7 Fetching associated objects

When an object has one or more associated objects, it’s important to
consider how associated objects will be loaded. Hibernate 3 offers you
two options. You can either retrieve associated objects using an outer
join or by using a separate SELECT statement. The fetch attribute allows
you to specify which method to use:

<many-to-one name="location" class="Location" fetch="join"/>

When an Event instance is loaded, the associated Location instance will
be loaded using an outer join. If you wanted to use a separate select,
the many-to-one element would look like this:

<many-to-one name="location" class="Location" fetch="select"/>

This also applies to child collections, but you can only fetch one collec-
tion using a join per persistent object. Additional collections must be
fetched using the SELECT strategy.

If you’re using Hibernate 2, the fetch attribute is not available. Instead,
you must use the outer-join attribute for many-to-one associations.
(There is no support for retrieving collections using a SELECT in Hiber-
nate 2.) The outer-join attribute takes either a true or false value.

Hibernate’s SessionFactory interface provides instances of the Ses-
sion class, which represent connections to the database. Instances of
SessionFactory are thread-safe and typically shared throughout an
application. Session instances, on the other hand, aren’t thread-safe
and should only be used for a single transaction or unit of work in
an application.

3.3.1 Configuring the SessionFactory

The Configuration class kicks off the runtime portion of Hibernate.
It’s used to load the mapping files and create a SessionFactory for

3.3 Building the SessionFactory
those mapping files. Once these two functions are complete, the

Licensed to Tricia Fu <tricia.fu@gmail.com>

Building the SessionFactory 67
Configuration class can be discarded. Creating a Configuration and
SessionFactory instance is simple, but you have some options. There
are three ways to create and initialize a Configuration object.

This first snippet loads the properties and mapping files defined in the
hibernate.cfg.xml file and creates the SessionFactory:

Configuration cfg = new Configuration();
SessionFactory factory = cfg.configure().buildSessionFactory();

The configure() method tells Hibernate to load the hibernate.cfg.xml
file. Without that, only hibernate.properties would be loaded from the
classpath. The Configuration class can also load mapping documents
programmatically:

Configuration cfg = new Configuration();
cfg.addFile("com/manning/hq/ch03/Event.hbm.xml");

Another alternative is to have Hibernate load the mapping document
based on the persistent class. This has the advantage of eliminating
hard-coded filenames in the source code. For instance, the following
code causes Hibernate to look for a file named com/manning/hq/
Event.hbm.xml in the classpath and load the associated class:

Configuration cfg = new Configuration();
cfg.addClass(com.manning.hq.ch03.Event.class);

Since applications can have tens or hundreds of mapping definitions,
listing each definition can quickly become cumbersome. To get around
this, the hibernate.cfg.xml file supports adding all mapping files in a
JAR file. Suppose your build process creates a JAR file named
application.jar, which contains all the classes and mapping definitions
required. You then update the hibernate.cfg.xml file:

<mapping jar="application.jar"/>
Licensed to Tricia Fu <tricia.fu@gmail.com>

68 CHAPTER 3 Hibernate basics
Of course, you can also do this programmatically with the Configura-
tion class:

Configuration.addJar(new java.io.File("application.jar"));

Keep in mind that the JAR file must be in the application classpath. If
you’re deploying a web application archive (WAR) file, your applica-
tion JAR file should be in the /WEB-INF/lib directory in the WAR file.

The four methods used to specify mapping definitions to the Hibernate
runtime can be combined, depending the requirements for your
project. However, once you create the SessionFactory from the Con-
figuration instance, any additional mapping files added to the Config-
uration instance won’t be reflected in the SessionFactory. This means
you can’t add new persistent classes dynamically.

You can use the SessionFactory instance to create Session instances:

Session session = factory.openSession();

Instances of the Session class represent the primary interface to the
Hibernate framework. They let you persist objects, query persistent
objects, and make persistent objects transient. Let’s look at persisting
objects with Hibernate.

Persisting a transient object with Hibernate is as simple as saving it
with the Session instance:

Event event = new Event();
// populate the event
Session session = factory.openSession();
session.save(event);
session.flush();

Calling save(...) for the Event instance assigns a generated ID value
to the instance and persists the instance. (Keep in mind that Hibernate

3.4 Persisting objects
doesn’t set the ID value if the generator type is assigned.) The flush()

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting objects 69
call forces persistent objects held in memory to be synchronized to the
database. Sessions don’t immediately write to the database when an
object is saved. Instead, the Session queues a number of database
writes to maximize performance.

If you would like to update an object that is already persistent, the
update(...) method is available. Other than the type of SQL operation
executed, the difference between save(...) and update(...) is that
update(...) doesn’t assign an ID value to the object. Because of this
minor difference, the Session interface provides the saveOrUpdate(...)
methods, which determine the correct operation to execute on the
object . How does Hibernate know which method to call on an object?

When we described the mapping document, we mentioned the
unsaved-value attribute. That attribute comes into play when you use
the saveOrUpdate(...) method. Suppose you have a newly created
Event instance. The id property is null until it’s persisted by Hiber-
nate. If the value is null, Hibernate assumes that the object is transient
and assigns a new id value before saving the instance. A non-null id
value indicates that the object is already persistent; the object is
updated in the database, rather than inserted.

You could also use a long primitive to store the primary key value.
However, using a primitive type also means that you must update the
unsaved-value attribute value to 0, since primitive values can’t be null.

TIP In general, we suggest that you use object wrapper classes for
primitive types in your persistent classes. To illustrate this, sup-
pose you have a legacy database with a boolean column, which
can be null. Your persistent class, mapped to the legacy table, also
has a boolean property. When you encounter a row in the legacy
table with a null boolean value, Hibernate throws a Property-
AccessException since a boolean primitive can’t be null—only
true or false. However, you can avoid this problem if your per-
sistent class property is of type java.lang.Boolean, which can
be null, true, or false.

Here’s the necessary code to persist an Event instance:
Licensed to Tricia Fu <tricia.fu@gmail.com>

70 CHAPTER 3 Hibernate basics
Configuration cfg = new Configuration();
SessionFactory factory = cfg.buildSessionFactory();

Event event = new Event();
// populate the Event instance

Session session = factory.openSession();
session.saveOrUpdate(event);
session.flush();
session.close();

The first two lines create the SessionFactory after loading the configu-
ration file from the classpath. After the Event instance is created and
populated, the Session instance, provided by the SessionFactory, per-
sists the Event. The Session is then flushed and closed, which closes the
JDBC connection and performs some internal cleanup. That’s all there
is to persisting objects.

Once you’ve persisted a number of objects, you’ll probably want to
retrieve them from the database. Retrieving persistent objects is the
topic of the next section.

Suppose you want to retrieve an Event instance from the database. If
you have the Event ID, you can use a Session to return it:

Event event = (Event) session.load(Event.class, eventId);
session.close();

This code tells Hibernate to return the instance of the Event class with
an ID equal to eventId. Notice that you’re careful to close the Session,
returning the database connection to the pool. There is no need to flush
the Session, since you’re not persisting objects—only retrieving them.
What if you don’t know the ID of the object you want to retrieve? This

3.5 Retrieving objects
is where HQL enters the picture.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Retrieving objects 71
The Session interface allows you to create Query objects to retrieve
persistent objects. (In Hibernate 2, the Session interface supported a
number of overloaded find methods. They were deprecated in Hiber-
nate 3.) HQL statements are object-oriented, meaning that you query
on object properties instead of database table and column names. Let’s
look at some examples using the Query interface.

This example returns a collection of all Event instances. Notice that you
don’t need to provide a select ... clause when returning entire objects:

Query query = session.createQuery("from Event");
List events = query.list();

In chapter 6, you’ll see how the SELECT clause works with HQL.

This query is a little more interesting since we’re querying on a prop-
erty of the Event class:

Query query = session.createQuery("from Event where name = "+
 "'Opening Presentation'");
List events = query.list();

We’ve hardcoded the name value in the query, which isn’t optimal.
Let’s rewrite it:

Query query = session.createQuery("from Event where name = ?",
 "Opening Presentation");
query.setParameter(0, "Opening Presentation", Hibernate.STRING);
List events = query.list();

The question mark in the query string represents the variable, which is
similar to the JDBC PreparedStatement interface. The second method
parameter is the value bound to the variable, and the third parameter
tells Hibernate the type of the value. (The Hibernate class provides
constants for the built-in types, such as STRING, INTEGER, and LONG, so

they can be referenced programmatically.)

Licensed to Tricia Fu <tricia.fu@gmail.com>

72 CHAPTER 3 Hibernate basics
One topic we haven’t touched on yet is the cache maintained by the
Session. The Session cache tends to cause problems for developers
new to Hibernate, so we’ll talk about it next.

One easy way to improve performance within the Hibernate service, as
well as your applications, is to cache objects. By caching objects in
memory, Hibernate avoids the overhead of retrieving them from the
database each time. Other than saving overhead when retrieving
objects, the Session cache also impacts saving and updating objects.
Let’s look at a short code listing:

Session session = factory.openSession();
Event e = (Event) session.load(Event.class, myEventId);
e.setName("New Event Name");
session.saveOrUpdate(e);
// later, with the same Session instance
Event e = (Event) session.load(Event.class, myEventId);
e.setDuration(180);
session.saveOrUpdate(e);
session.flush();

This code first retrieves an Event instance, which the Session caches
internally. It then does the following: updates the Event name, saves or
updates the Event instance, retrieves the same Event instance (which is
stored in the Session cache), updates the duration of the Event, and
saves or updates the Event instance. Finally, you flush the Session.

All the updates made to the Event instance are combined into a single
update when you flush the Session. This is made possible in part by the
Session cache.

The Session interface supports a simple instance cache for each object
that is loaded or saved during the lifetime of a given Session. Each
object placed into the cache is keyed on the class type, such as

3.6 The Session cache
Licensed to Tricia Fu <tricia.fu@gmail.com>

The Session cache 73
com.manning.hq.ch03.Event, and the primary key value. However, this
cache presents some interesting problems for unwary developers.

A common problem new developers run into is associating two
instances of the same object with the same Session instance, resulting
in a NonUniqueObjectException. The following code generates this
exception:

Session session = factory.openSession();
Event firstEvent = (Event) session.load(Event.class, myEventId);
// ... perform some operation on firstEvent
Event secondEvent = new Event();
secondEvent.setId(myEventId);
session.save(secondEvent);

This code opens the Session instance, loads an Event instance with a
given ID, creates a second Event instance with the same ID, and then
attempts to save the second Event instance, resulting in the Non-
UniqueObjectException.

Any time an object passes through the Session instance, it’s added to
the Session’s cache. By passes through, we’re referring to saving or
retrieving the object to and from the database. To see whether an
object is contained in the cache, call the Session.contains() method.
Objects can be evicted from the cache by calling the Session.evict()
method. Let’s revisit the previous code, this time evicting the first
Event instance:

Session session = factory.openSession();
Event firstEvent = (Event) session.load(Event.class, myEventId);
// ... perform some operation on firstEvent
if (session.contains(firstEvent)) {
 session.evict(firstEvent);
}
Event secondEvent = new Event();
secondEvent.setId(myEventId);
session.save(secondEvent);
Licensed to Tricia Fu <tricia.fu@gmail.com>

74 CHAPTER 3 Hibernate basics
The code first opens the Session instance and loads an Event instance
with a given ID. Next, it determines whether the object is contained in
the Session cache and evicts the object if necessary. The code then cre-
ates a second Event instance with the same ID and successfully saves
the second Event instance.

If you simply want to clear all the objects from the Session cache, you
can call the aptly named Session.clear() method.

So far, we’ve covered the basics of Hibernate configuration and use.
Now we’ll address some of the advanced configuration options that
come into play when you deploy Hibernate in an application server.

Applications usually require more than a simple database connection.
Scalability, stability, and performance are core aspects of any enter-
prise application. Popular solutions to achieve these goals include data-
base connection pooling, transaction strategies, and object caching.
Hibernate supports each of these solutions.

3.7.1 Connection pools

Connection pools are a common way to improve application perfor-
mance. Rather than opening a separate connection to the database for
each request, the connection pool maintains a collection of open data-
base connections that are reused. Application servers often provide
their own connection pools using a JNDI DataSource, which Hiber-
nate can take advantage of when configured to use a DataSource.

If you’re running a standalone application or your application server
doesn’t support connection pools, Hibernate supports three connec-
tion pooling services: C3P0, Apache’s DBCP library, and Proxool.
C3P0 is distributed with Hibernate; the other two are available as sep-
arate distributions.

3.7 Advanced configuration
Licensed to Tricia Fu <tricia.fu@gmail.com>

Advanced configuration 75
When you choose a connection pooling service, you must configure it
for your environment. Hibernate supports configuring connection
pools from the hibernate.cfg.xml file. The connection.provider_class
property sets the pooling implementation:

<property name="connection.provider_class">
 org.hibernate.connection.C3P0ConnectionProvider
</property>

Once the provider class is set, the specific properties for the pooling
service can also be configured from the hibernate.cfg.xml file:

<property name="c3p0.minPoolSize">
 5
</property>
...
<property name="c3p0.timeout">
 1000
</property>

As you can see, the prefix for the C3P0 configuration parameters is
c3p0. Similarly, the prefixes for DBCP and Proxool are dbcp and
proxool, respectively. Specific configuration parameters for each pool-
ing service are available in the documentation with each service.
Table 3.1 lists information for the supported connection pools.

Hibernate ships with a basic connection pool suitable for development
and testing purposes. However, it should not be used in production.
You should always use one of the available connection pooling ser-
vices, like C3P0, when deploying your application to production.

If your preferred connection pool API isn’t currently supported by
Hibernate, you can add support for it by implementing the
org.hibernate.connection.ConnectionProvider interface. Implement-
ing the interface is straightforward.
Licensed to Tricia Fu <tricia.fu@gmail.com>

76 CHAPTER 3 Hibernate basics
There isn’t much to using a connection pool, since Hibernate does
most of the work behind the scenes. The next configuration topic we’ll
look at deals with transaction management with the Hibernate Trans-
action API.

3.7.2 Transactions

Transactions group many operations into a single unit of work. If any
operation in the batch fails, all of the previous operations are rolled
back, and the unit of work stops. Hibernate can run in many different
environments supporting various notions of transactions. Standalone
applications and some application servers only support simple JDBC
transactions, whereas others support the Java Transaction API (JTA).

Hibernate needs a way to abstract the various transaction strategies
from the environment. Hibernate has its own Transaction class that is
accessible from the Session interface, demonstrated here:

Session session = factory.openSession();
Transaction tx = session.beginTransaction();
Event event = new Event();
// ... populate the Event instance
session.saveOrUpdate(event);
tx.commit();

Table 3.1 Connection pooling services

Pooling Service Provider Class
Configuration

Prefix

C3P0 org.hibernate.connec-
tion.C3P0ConnectionProvider

c3p0

Apache DBCP org.hibernate.connection.Proxool-
ConnectionProvider

dbcp

Proxool org.hibernate.connection.DBCPCon-
nectionProvider

proxool
Licensed to Tricia Fu <tricia.fu@gmail.com>

Advanced configuration 77
In this example, factory is an initialized SessionFactory instance. This
code creates an instance of the org.hibernate.Transaction class and
then commits the Transaction instance.

Notice that you don’t need to call session.flush(). Committing a
transaction automatically flushes the Session object. The Event

instance is persisted to the database when the transaction is committed.
The transaction strategy you use (JDBC or JTA) doesn’t matter to the
application code—it’s set in the Hibernate configuration file.

The transaction.factory_class property defines the transaction strat-
egy that Hibernate uses. The default setting is to use JDBC transac-
tions since they’re the most common. To use JTA transactions, you
need to set the following properties in hibernate.cfg.xml:

<property name="transaction.factory_class">
 org.hibernate.transaction.JTATransactionFactory
</property>
<property name="jta.UserTransaction">
 java:comp/UserTransaction
</property>

The transaction.factory_class property tells Hibernate that you’ll be
using JTA transactions. Currently, the only other option to JTA is
JBDC transactions, which is the default. JTA transactions are
retrieved from a JNDI URI, which is specified using the jta.User-
Transaction property. If you don’t know the URI for your specific
application server, the default value is java:comp/UserTransaction.

There is some confusion about another property related to JTA trans-
actions: transaction.manager_lookup_class. You only need to specify
the manager lookup class when you’re using a transactional cache. (We
discuss caches in the next section—don’t worry.) However, if you
don’t define the jta.UserTransaction property and transac-

tion.manager_lookup_class is defined, the user transaction name in
the lookup factory class is used. If neither of the properties are used,

Hibernate falls back to java:comp/UserTransaction.

Licensed to Tricia Fu <tricia.fu@gmail.com>

78 CHAPTER 3 Hibernate basics
What’s the benefit of using JTA transactions? JTA transactions are
useful if you have multiple transactional resources, such as a database
and a message queue. JTA allows you to treat the disparate transac-
tions as a single transaction. Combining multiple transactions also
applies within Hibernate. If you attempt to create multiple transac-
tions from the same Session instance, all of the operations are
batched into the first transaction. Let’s look at an example that
includes two transactions:

Transaction tx0 = session.beginTransaction();
Event event = new Event();
// ... populate the event instance
session.saveOrUpdate(event);

Transaction tx1 = session.beginTransaction();
Location location = new Location();
// ... populate the Location instance
session.saveOrUpdate(location);
tx0.commit();
tx1.commit();

This example begins by creating a new transaction. The second use of
session.beginTransaction() just returns the first transaction instance.
session.saveOrUpdate(location) commits the first transaction, and
tx0.commit() recommits the first transaction.

Although you explicitly create two Transaction objects, only one is
used. Of course, this creates a problem. Let’s assume you have a Ses-
sion object being used by two application threads. The first application
thread begins the JTA transaction and starts adding objects. Mean-
while, the second thread, using the same transaction, deletes an object
and commits the transaction. Where does this leave the first thread?

The first thread won’t be committed, which is what you’d expect. The
problem is that this issue can be hard to debug, bringing up an impor-
tant point: Sessions should be used by only one application thread at
a time. This is a common concern in web applications, which are
multithreaded by their very nature. We discuss using Hibernate with

web applications in chapter 8.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Advanced configuration 79
In the next section, we discuss Hibernate’s support for various caching
providers.

3.7.3 Cache providers

As we mentioned earlier, caching is a common method used to improve
application performance. Caching can be as simple as having a class
store frequently used data, or a cache can be distributed among multi-
ple computers. The logic used by caches can also vary widely, but most
use a simple least recently used (LRU) algorithm to determine which
objects should be removed from the cache after a configurable amount
of time.

Before you get confused, let’s clarify the difference between the Ses-
sion-level cache, also called the first-level cache, and what this section
covers. The Session-level cache stores object instances for the lifetime
of a given Session instance. The caching services described in this sec-
tion cache data outside of the lifetime of a given Session. Another way
to think about the difference is that the Session cache is like a trans-
actional cache that only caches the data needed for a given operation
or set of operations, whereas a second-level cache is an application-
wide cache.

NOTE Caching services are typically referred to as second-level caches
elsewhere in this book and in other Hibernate documentation.
When you see it mentioned in the text, we’re referring to external
caching services.

By default, Hibernate supports four different caching services, listed in
table 3.2. EHCache (Easy Hibernate Cache) is the default service. If
you prefer to use an alternative cache, you need to set the
cache.provider_class property in the hibernate.cfg.xml file:

<property name="cache.provider_class">
 org.hibernate.cache.OSCacheProvider
</property>

This snippet sets the cache provider to the OSCache caching service.
Licensed to Tricia Fu <tricia.fu@gmail.com>

80 CHAPTER 3 Hibernate basics
The caching services support the caching of classes as well as collec-
tions belonging to persistent classes. For instance, suppose you have a
large number of Attendee instances associated with a particular Event
instance. Instead of repeatedly fetching the collection of Attendees, you
can cache it. Caching for classes and collections is configured in the
mapping files, with the cache element:

<class name="Event" table="events">
 <cache usage="read-write"/>
 ...
</class>

Collections can also be cached:

<set name="attendees">
 <cache usage="read-write"/>
 ...
</set>

Once you’ve chosen a caching service, what do you, the developer,
need to do differently to take advantage of cached objects? Thankfully,
you don’t have to do anything. Hibernate works with the cache behind
the scenes, so concerns about retrieving an outdated object from the
cache can be avoided. You only need to select the correct value for the
usage attribute.

Table 3.2 Caching services supported by Hibernate

Caching
Service

Provider Class Type

EHCache org.hibernate.cache.EhCacheProvider Memory, disk

OSCache org.hibernate.cache.OSCacheProvider Memory, disk

SwarmCache org.hibernate.cache.SwarmCacheProvider Clustered

TreeCache org.hibernate.cache.TreeCacheProvider Clustered
Licensed to Tricia Fu <tricia.fu@gmail.com>

Advanced configuration 81
The usage attribute specifies the caching concurrency strategy used by
the underlying caching service. The previous configuration sets the
usage to read-write, which is desirable if your application needs to
update data. Alternatively, you may use the nonstrict-read-write
strategy if it’s unlikely two separate transaction threads could update
the same object. If a persistent object is never updated, only read from
the database, you may specify set usage to read-only.

Some caching services, such as the JBoss TreeCache, use transactions
to batch multiple operations and perform the batch as a single unit of
work. If you choose to use a transactional cache, you may set the usage
attribute to transactional to take advantage of this feature. If you hap-
pen to be using a transactional cache, you’ll also need to set the trans-
action.manager_lookup_class mentioned in the previous section.

The supported caching strategies differ based on the service used.
Table 3.3 shows the supported strategies.

Clearly, the caching service you choose will depend on your applica-
tion requirements and environment. Next, let’s look at configuring
EHCache.

Configuring EHCache

By now you’re probably tired of reading about configuring Hibernate,
but EHCache is pretty simple. It’s a single XML file, placed in a direc-
tory listed in your classpath. You’ll probably want to put the

Table 3.3 Supported caching service strategies

Caching
Service

Read-only Read-write
Nonstrict-
read-write

Transactional

EHCache Y Y Y N

OSCache Y Y Y N

SwarmCache Y Y Y N

TreeCache Y N N Y
ehcache.xml file in the same directory as the hibernate.cfg.xml file.

Licensed to Tricia Fu <tricia.fu@gmail.com>

82 CHAPTER 3 Hibernate basics
Listing 3.5 shows a simple configuration file for EHCache.

Listing 3.5 ehcache.xml file

<ehcache>
 <diskStore path="java.io.tmp"/>
 <defaultCache
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="true"/>
 <cache name="com.manning.hq.ch03.Event"
 maxElementsInMemory="20"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="180"
 overflowToDisk="true"/>
</ehcache>

In this example, the diskStore property sets the location of the disk
cache store. Then, the listing declares two caches. The defaultCache
element contains the settings for all cached objects that don’t have a
specific cache element: the number of cached objects held in memory,
whether objects in the cache expire (if eternal is true, then objects
don’t expire), the number of seconds an object should remain the cache
after it was last accessed, the number of seconds an object should
remain in the cache after it was created, and whether objects exceeding
maxElementsInMemory should be spooled to the diskStore. Next, for
custom settings based on the class, the code defines a cache element
with the fully qualified class name listed in the name attribute. (This list-
ing only demonstrates a subset of the available configuration for
EHCache. Please refer to the documentation found at http://
ehcache.sf.net for more information.)

With pooling, transactions, and caching behind us, we can look at a dif-
ference topic: how Hibernate handles inheritance.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Inheritance 83
Inheritance is a fundamental concept of object-oriented languages.
Through inheritance, objects can inherit the state and behavior of their
ancestor, or superclass. The most common use of object inheritance in
applications is to create a generic base type with one or more special-
ized subclasses. Persisting a class hierarchy can be difficult, since each
hierarchy can have its own unique requirements.

To address the problems found in hierarchy persistence, Hibernate
supports three different inheritance persistence strategies:

❂ Table per class hierarchy
❂ Table per subclass
❂ Table per concrete class

Each mapping strategy is incrementally more complicated. In the fol-
lowing sections, we’ll discuss the first two inheritance strategies. We’ve
never needed to use the third, and most complicated, strategy.

3.8.1 Table per class hierarchy

This strategy is the most basic and easiest to use. All the classes in the
hierarchy are stored in a single table. Suppose you have the base Event
class, with ConferenceEvent and NetworkingEvent as subclasses. The
mapping definition for this hierarchy is shown in listing 3.6.

Listing 3.6 Table per class hierarchy mapping

<class name="Event" table="events" discriminator-value="EVENT">
 <id name="id" type="long">
 <generator class="native"/>
 </id>
 <discriminator column="event_type" type="string" length="15"/>
 ...
 <subclass name="ConferenceEvent" discriminator-

value="CONF_EVENT">
 <property name="numberOfSeats" column="num_seats"/>

3.8 Inheritance
 ...

Licensed to Tricia Fu <tricia.fu@gmail.com>

84 CHAPTER 3 Hibernate basics
 </subclass>
 <subclass name="NetworkingEvent" discriminator-

value="NET_EVENT">
 <property name="foodProvided" column="food_provided"/>
 ...
 </subclass>
</class>

We’ve introduced a few new features in the mapping definition. The
most important is the inclusion of the discriminator element. The dis-
criminator column is what Hibernate uses to tell the different sub-
classes apart when retrieving classes from the database. If you don’t
specify a discriminator value, Hibernate uses the object’s class name.
The discriminator element in the example mapping tells Hibernate to
look in the event_type column for a string describing the class type.

The discriminator is only a column in the relational table—you don’t
need to define it as a property in your Java object. In chapter 6, you’ll
see how the discriminator value can be used to retrieve specific sub-
classes in a query.

The subclass element contains the properties and associations belong-
ing to the subclass. Any association element is allowed between sub-
class tags. You can’t have an id element or a nested subclass element.

The table per class hierarchy strategy requires a single table, events, to
store the three types of Event instances. Let’s look at what our events
table would look like with the table per hierarchy strategy, as shown in
figure 3.3.

Event

Networking

Event

Conference

Event

events

id
event_type
name
start_date
duration
num_seats
food_provided

bigint
varchar(15)
varchar(100)
date
int
int
boolean
Figure 3.3 Table per hierarchy mapping

Licensed to Tricia Fu <tricia.fu@gmail.com>

Inheritance 85
As you can see, one table contains the fields for all the objects in the
hierarchy. The only obvious limitation is that your subclasses can’t
have columns declared as NOT NULL. Subclasses can’t have non-null
attributes because inserting the superclass, which doesn’t even have
the non-null attribute, will cause a null column violation when it’s
inserted into the database. The next inheritance strategy, table per sub-
class, doesn’t have this limitation.

3.8.2 Table per subclass

Instead of putting all the classes into a single table, you can choose to
put each subclass into its own table. This approach eliminates the dis-
criminator column and introduces a one-to-one mapping from the sub-
class tables to the superclass table. The mapping definition for this
strategy is shown in listing 3.7.

Listing 3.7 Table-per-subclass mapping

<class name="Event" table="events">
 <id name="event_id" type="long">
 <generator class="native"/>
 </id>
 <joined-subclass name="ConferenceEvent" table="conf_events">
 <key column="event_id"/>
 ...
 </joined-subclass>
 <joined-subclass name="NetworkingEvent" table="net_events">
 <key column="event_id"/>
 ...
 </joined-subclass>
</class>

The joined-subclass element can contain the same elements as the
subclass element. The key element contains the primary key associa-
tion to the superclass, Event. Figure 3.4 shows the resulting relational
schema.

Creating an association to an Event or one of its subclasses is a simple

many-to-one element:

Licensed to Tricia Fu <tricia.fu@gmail.com>

86 CHAPTER 3 Hibernate basics
<many-to-one class="Event" column="event"/>

Since this association can refer to any class in the Event hierarchy, the
association is referred to as a polymorphic association. You can also
create a concrete association by giving the name of the specific subclass:

<many-to-one class="NetworkingEvent" column="event"/>

Persisting class hierarchies may seem like a complicated proposition,
but Hibernate makes it fairly straightforward.

We’ve covered quite a bit of ground in this chapter. Starting with the
most basic Hibernate configuration, we explored mapping file defini-
tions and advanced configuration options.

As a persistence service, Hibernate operates in managed and nonman-
aged environments. The configuration file, hibernate.cfg.xml, specifies
how Hibernate obtains database connections—either from a JNDI
DataSource or from a JDBC connection pool. Additionally, the map-
ping definition files describing the persistent classes may be specified in
the configuration file.

Mapping files provide Hibernate with the necessary information to
persist objects to a relational database. Each persistent property of a

3.9 Summary

Event

Networking

Event

Conference

Event

events

id
name
start_date
duration

bigint
varchar(100)
date
int

event_id
num_seats

bigint
int

event_id
food_provided

bigint
boolean

conf_events net_events

Figure 3.4 Table per subclass hierarchy
Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 87
class is defined in the mapping file, including collections and associa-
tions to other persistent objects. The mapping file also defines the man-
datory primary key for persistent objects.

The primary key is defined using the id element. The id element pro-
vides the name of the object property, the column used to persist the
primary key, and the strategy used to generate the primary key value.
Hibernate supports 10 generator strategies, including the assigned
strategy that lets you assign a primary key value outside of Hibernate.

Once the configuration and mapping files are written, the Configura-
tion object loads the files and is used to create a SessionFactory. The
SessionFactory only needs to be initialized once and can be reused
throughout the application. The SessionFactory creates instances of
the Session interface. Session instances are basically database connec-
tions with some additional functionality.

The Session interface is the primary developer interface to Hibernate.
Using it, you can persist transient objects and make persistent objects
transient. It also provides querying capabilities and transaction sup-
port. Unlike the SessionFactory, Session instances should not be
reused throughout the application. Instead, a new Session instance
should be obtained for each transaction.

Additional pluggable components supported by Hibernate include
database connection pool services, transaction management, and object
caching services. These components can improve performance by reus-
ing or caching objects and improving transaction management.

Hibernate is flexible enough to be used in any Java application envi-
ronment. In this chapter, we examined how to configure it to support
application persistence in managed and nonmanaged environments,
as well as how to create the SessionFactory and persist objects. In
the next chapter, we’ll look at how Hibernate handles associations
and components.
Licensed to Tricia Fu <tricia.fu@gmail.com>

4
Associations and
components

This chapter covers

• Using many-to-one relationships to join tables

• Building the database with Ant and SchemaExport

• Using components to make finely grained object models

p until now, you have seen simple queries that basically pull data from a
single table. The additional work of mapping a single persistent object
might not seem worth the trouble. The real value of using an ORM

framework like Hibernate is that you can connect objects together and then fetch
an entire object graph with a simple query. Take a seemingly insignificantly
small query like the following:

List list = session.find("from Event");

This query could return 1, 10, or 1000 persistent objects from the data-
base, including not only Events but other objects linked to each Event.
This approach is extremely efficient if you need all of them, and Hiber-
nate even allows you to expand or shrink the scope of which objects are
pulled from the database. One of the ways to do this is to define associa-
tions between persistent objects.

U

88

Licensed to Tricia Fu <tricia.fu@gmail.com>

Associations 89
Nearly any relationship between two objects you can write can be
mapped to a relational database by Hibernate. Powerful stuff indeed.
This chapter covers how you can build those rich object models and
turn over the heavy lifting to Hibernate to convert them back and forth
between Java and the database.

Chapter goals

This chapter is all about relationships and rich object models. We
expand our sample application a bit, and along the way we explore how
Hibernate can bring objects together. You’ll accomplish the following:

❂ Create a unidirectional many-to-one association between the Event
and Locations.

❂ Automatically build a database table from our mapping documents
using SchemaExport and Ant.

❂ Use a component to create an Address object, a finely grained object
that doesn’t get its own table, as entities do.

Assumptions

This chapter builds on what you have learned in previous chapters, so
we assume you should be able to do the following:

❂ Configure a Hibernate SessionFactory using the hibernate.cfg.xml
file.

❂ Make a single object persistent using a Hibernate mapping docu-
ment.

❂ Obtain a session from the SessionFactory and use it to persist and
load objects.

The simplest association that Hibernate supports is linking two entities

4.1 Associations
together. Entity is a term for an object that has its own persistent

Licensed to Tricia Fu <tricia.fu@gmail.com>

90 CHAPTER 4 Associations and components
identity.1 For example, the Events you have worked with so far are
entities. Even if two events had the same name and date, they might be
completely different events, differing only by their identity. In your
applications, Locations are also entities; each one has a unique identity.
After all, there is probably an Oak Street in every suburb in America,
but each one is a different street.2

In our application, every Event is held at a single Location only. The
way you would represent this in Java is to have an Event object with a
Location field. When you retrieve an Event, you usually want the Loca-
tion too. So you are going to link Event and Location together using a
many-to-one relationship.

4.1.1 Many-to-one relationships, in depth

In section 3.2, you saw a sample mapping file for an Event. Here we go
a little deeper and explore a many-to-one relationship in a bit more
depth.

Defining the Event and Location classes

In this section you’ll create an Event class, with a many-to-one relation-
ship to Location. From a detailed UML perspective, figure 4.1 shows
what this relationship will look like.

In other words, many events can be in single location. First, create two
classes (shown in listing 4.1 and listing 4.2), in the /work/calendar/src/
java/com/manning/hq/ch04 directory.

1 The generic term “entity” is not to be confused with entity beans, which EJB uses to make
objects unique.

-id : long

-name : string

-duration : int

-startDate : Date

Event

-id : long

-name : string

-address : string

Location

*

-location

1

Figure 4.1
UML diagram of Event

and Location
2 Old joke: Suburbs are where they cut down trees and then rename the streets after them.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Associations 91
Listing 4.1 Basic Event.java class

package com.manning.hq.ch04;

import java.io.Serializable;
import java.util.Date;
import com.manning.hq.ch04.Location;

public class Event implements Serializable {
 private Long id;
 private int duration;
 private String name;
 private Date startDate;
 private Location location;

 public Event() { }
 public Event(String name) {
 this.name = name;
 }

 public Long getId() { return id; }
 public void setId(Long id) {
 this.id = id;
 }

 public String getName() { return name; }
 public void setName(String name) {
 this.name = name;
 }

 public Date getStartDate() { return startDate; }
 public void setStartDate(Date startDate) {
 this.startDate = startDate;
 }

 public int getDuration() { return duration; }
 public void setDuration(int duration) {
 this.duration = duration;
 }

 public Location getLocation() { return location; }
 public void setLocation(Location location) {
 this.location = location;
 }
}

Licensed to Tricia Fu <tricia.fu@gmail.com>

92 CHAPTER 4 Associations and components
Listing 4.2 Basic Location class

package com.manning.hq.ch04;

import java.io.Serializable;

public class Location implements Serializable {
 private Long id;
 private String name;
 private String address;

 public Location() { }
 public Location(String name) {
 this.name = name;
 }

 public Long getId() { return id; }
 public void setId(Long id) {
 this.id = id;
 }

 public String getName() { return name; }
 public void setName(String name) {
 this.name = name;
 }

 public String getAddress() { return address; }
 public void setAddress(String address) {
 this.address = address;
 }
}

As you can see, both of these are basic classes, which follow the Java-
Bean specification for getter/setter fields. In listing 4.1, note that Event
has a location field, which links it to a Location object. Also note that in
listing 4.2, to keep the example simple for now, we have made the
address field of Location a simple String. Later in this chapter, you will
create the Address object you saw on Location in the previous chapter.

Mapping the database

Given the Java classes Event and Location that you have created so

far, you need to map them to the database structure. Figure 4.2 shows

Licensed to Tricia Fu <tricia.fu@gmail.com>

Associations 93
what the entity-relationship (ER) diagram for the two relational data-
base tables will look like.

It might be worth pointing out that a database ER diagram for the data
model shows the arrow pointing from locations to events based on the
FK-PK relationship, whereas the corresponding UML object model
focuses on association navigation from the Event object to the Loca-
tion. This highlights a very simple example of the Object-Relational
paradigm mismatch. So we need some more information to explain
how the two objects are mapped to the database.

As discussed in section 3.2, each of the classes needs a corresponding
mapping file, in this case, Event.hbm.xml and Location.hbm.xml,
which will define the persistent fields and the relationship between the
two files. Put the files in the same directory as the Event.java and
Location.java files. Listing 4.3 shows these two mapping files.

Listing 4.3 Location.hbm.xml, which makes Location a
persistent entity

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.manning.hq.ch04">
 <class name="Location" table="locations">
 <id name="id" column="uid" type="long">

events

PK uid

 name

start_date

 duration

 location_id

locations

PK,FK1 uid

 name

 address

Figure 4.2 ER diagram for the events and locations tables
 <generator class="native"/>

Licensed to Tricia Fu <tricia.fu@gmail.com>

94 CHAPTER 4 Associations and components
 </id>
 <property name="name" type="string"/>
 <property name="address" type="string"/>
 </class>
</hibernate-mapping>

Note that in listing 4.3 you include a DTD declaration, which helps
IDEs validate the document. The line <class name="Location"

table="locations"> persists instances to the location’s table.

Next, create a mapping file for your Event class (listing 4.4) and put it
in the same directory.

Listing 4.4 The Event.hbm.xml mapping file, which makes Event
persistent and links it to your Location class

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="com.manning.hq.ch04">
 <class name="Event" table="events">
 <id name="id" column="uid" type="long">
 <generator class="native"/>
 </id>
 <property name="name" type="string"/>
 <property name="startDate" column="start_date"
 type="date"/>
 <property name="duration" type="integer"/>
 <many-to-one name="location" column="location_id"
class="Location" />
 </class>
</hibernate-mapping>

The mapping element <many-to-one class="Location" /> in listing 4.4
converts the Java field location into its SQL/relational-based represen-
tation. This element says that there should be a foreign key,
location_id, in the events table, which links to the locations table.

The class attribute defines which Java class handles the association.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Associations 95
At this point, you have created all the individual files for your persistent
many-to-one classes, including Event.java, Event.hbm.xml, Loca-
tion.java, and Location.hbm.xml. The next thing you need to do is actu-
ally configure your SessionFactory so that it can work with your two
persistent classes. You will do that in the next section by creating a sin-
gle configuration file that has all the information needed to connect to
the database. You will also define which classes can be made persistent.

4.1.2 The central configuration file

The previous section defined the classes and the mapping files needed
to make your many-to-one classes, Event and Location, persistent. The
final step before you can start saving and finding your objects is to con-
figure a SessionFactory. In this section you will do just that, by using a
hibernate.cfg.xml file.

As we mentioned in section 3.1.1, there are a number of ways to config-
ure the SessionFactory. For our sample application, you are going to
use hibernate.cfg.xml as your single central configuration file. You’ll
configure it to make both Event and Location persistent classes.

As a quick reminder, the hibernate.cfg.xml file contains the properties
to configure the database and declare the location of the mapping files.
So create this file, called hibernate.cfg.xml, in the /work/calendar/src/
java directory. Open a text editor and add the code shown in
listing 4.5.

Listing 4.5 The hibernate.cfg.xml file for Event and Location

<?xml version="1.0"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/

➥ hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="connection.username">root</property>
 <property name="connection.password"></property>

 <property name="connection.url">

Licensed to Tricia Fu <tricia.fu@gmail.com>

96 CHAPTER 4 Associations and components
 jdbc:mysql://localhost/events_calendar
 </property>
 <property name="connection.driver_class">
 com.mysql.jdbc.Driver
 </property>
 <property name="dialect">
 org.hibernate.dialect.MySQLDialect
 </property>
 <mapping resource="com/manning/hq/ch04/Event.hbm.xml"/>
 <mapping resource="com/manning/hq/ch04/Location.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

We covered the details of the hibernate.cfg.xml file in listing 3.1, so
only a quick review is needed here. Note that you have configured the
database to point to your event_calendar database, which you will cre-
ate and populate in sections 4.1.3 and 4.2. You connect to the database
as the root user, using the MySQL Connector/J database driver. You
have also defined the paths to your Event.hbm.xml and Loca-
tion.hbm.xml files, which tell the SessionFactory where to find them.

At this point you have finished the configuration needed to get down to
business and start persisting objects. In the next section, you will load
some sample Events and Locations into the database using your freshly
configured SessionFactory.

4.1.3 Defining sample data

To give you some sample data to play with, let’s create a Java class that
you will use to populate your database in section 4.2.3. Your event
loader (shown in listing 4.6) will connect to the session factory, create
some events and locations, and save them to the database.

Listing 4.6 EventLoader.java

package com.manning.hq.ch04;

import org.hibernate.*;

import org.hibernate.cfg.Configuration;

Licensed to Tricia Fu <tricia.fu@gmail.com>

Associations 97
import java.util.*;
import com.manning.hq.ch04.Location;

public class EventLoader {
 public static void main(String[] args) {
 Location location = new Location();
 location.setName("Hilton Convention Center");
 location.setAddress("950 North Stafford St.");

 Event event = new Event();
 event.setName("Annual Meeting");
 event.setDuration(60);
 event.setStartDate(createDate(2004, 11, 1));
 event.setLocation(location);

 Session session = null;
 Transaction tx = null;
 SessionFactory sessionFactory = null;
 try {
 Configuration configuration = new Configuration();
 // Configure from hibernate.cfg.xml
 // at root of classpath.
 configuration.configure();

 sessionFactory = configuration.buildSessionFactory();
 session = sessionFactory.openSession();
 tx = session.beginTransaction();

 session.save(location);
 session.save(event);
 session.flush();
 tx.commit();
 System.out.println("Event and location saved!");

 } catch (HibernateException e) {

 try {
 if(tx != null) {
 tx.rollback();
 }
 } catch (HibernateException ignore) {
 // ignore
 }

 throw e; // Rethrow

Creates a
Location and
populates it

B

Creates an
Event and
populates itC

Associates the
Location and
the EventD

Saves your
Location and
EventE

Performs necessary
exception handling
and resource cleanupF
Licensed to Tricia Fu <tricia.fu@gmail.com>

98 CHAPTER 4 Associations and components
 } finally {
 if (session != null) {
 try {
 session.close();
 } catch (HibernateException ignore) {
 // ignore
 }
 }
 if (sessionFactory != null) {
 try {
 sessionFactory.close();
 } catch (HibernateException e) {
 // ignore
 }
 }
 }
 }

 /**
 * @param year
 * @param month - This is 0-based:
 * 0 = January, 11 = December
 * @param day
 * @return
 */
 private static Date createDate(int year, int month, int day) {
 Calendar calendar = Calendar.getInstance();
 calendar.set(year, month, day);
 return calendar.getTime();
 }
}

A few lines in listing 4.6 warrant a bit more explanation:

Here we are creating our Event and Location objects and populating
them with some sample data. In a typical application, the user might
create and populate these objects via a GUI or web interface. In any
case, since you are just working with JavaBeans, the choice of how
you get data into them is left to you, the application developer.

B C
Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 99
We also use a helper method to create a specific date, in this case
December 1, 2004. Hiding the slightly complex creation of dates away
in a helper method makes the main code easier to read.3

Associating an Event and a Location is the point of the exercise, and
isn’t any harder than setting other simple properties in B and C.

Building the SessionFactory this way looks for a resource hiber-
nate.cfg.xml at the root of the classpath. We save the location first, and
then the event. As long as we save both before calling session.flush(),
Hibernate will correctly associate them. Calling flush() and commit-
ting the transaction causes Hibernate to generate SQL that inserts an
Event and a Location into the database.

The final necessary step performs resource cleanup and exception han-
dling. Here we roll back any changes we made, if a HibernateException
was thrown while saving our objects. Last but not least, we clean up all
the resources we opened, including the Session and SessionFactory.

If you run this code, you should have two new rows in your database.
There will be one row in the events table and one in the locations
table, linked by a foreign key, location_id. The only catch is that you
don’t have those tables in your events_calendar database yet. So
before you can run your EventLoader, you need to create those tables.
We’ll do that next.

Adding tables is a common task when you are working with a database.
It should be fairly trivial to issue a few CREATE TABLE statements
against your database. However, beware of drifting along the danger-
ous path of duplication. You have already created your Event class,

3 Java’s Calendar and Date classes are notoriously non-user-friendly, especially for simple
and common tasks like creating a specific date in time. The non-intuitiveness includes using

4.2 Building tables with Ant and SchemaExport

D

E

F

0-based months, which makes December month #11.

Licensed to Tricia Fu <tricia.fu@gmail.com>

100 CHAPTER 4 Associations and components
with its name field, and a mapping document, which again has a name
field. Why should you have to create yet a third file with the SQL
statement to create the events table? Considering that Hibernate is
already generating SQL to do inserts, updates, and deletes, surely it
can give you a hand here in creating tables as well. Thankfully, it can.

To that end, Hibernate includes an Ant task, SchemaExport, which will
examine your mapping files, persistent classes, and hibernate.cfg.xml
file, and generate the tables for you. Adding it to your build.xml file
also means you can drop and re-create the database very easily. You
are going to update the build.xml file you saw in chapters 2 and 3, and
add a SchemaExport task to build your database quickly (listing 4.7). In
addition, you will modify the file to run your EventLoader class.

Listing 4.7 The build4.xml file with a SchemaExport task that builds
the tables Hibernate needs

<project name="build4.xml" default="build">
 <property name="src.java.dir" value="src/java"/>
 <property name="build.classes.dir" value="build/classes"/>
 <property name="hibernate.version" value="3.0"/>
 <property name="mysql.jdbc.version" value="3.1.7"/>
 <property name="applications.dir" location="/applications"/>
 <property name="hibernate.lib.dir"
 value="${applications.dir}/hibernate-${hibernate.version}"/>

 <property name="jdbc.driver.jar"
 value="${applications.dir}/mysql-connector-java-
➥ ${mysql.jdbc.version}/mysql-connector-java-
➥ ${mysql.jdbc.version}-bin.jar" />

 <import file="hibernate-build.xml" />

 <path id="project.classpath">
 <pathelement location="${build.classes.dir}"/>
 </path>
 <path id="runtime.classpath">
 <path refid="project.classpath"/>

Specifies location of
JAR with MySQL’s
database driverB

Indicates new classpath with all the
needed JARs and Hibernate files

Includes compiled

 <path refid="hibernate.lib.path"/> .class files

Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 101
 <pathelement location="${jdbc.driver.jar}"/>
 <pathelement location="${src.java.dir}" />
 </path>
 <target name="clean">
 <delete dir="${build.classes.dir}"/>
 </target>
 <target name="init">
 <mkdir dir="${build.classes.dir}"/>
 </target>
 <target name="compile" depends="init" >
 <javac
 srcdir="${src.java.dir}"
 destdir="${build.classes.dir}">
 <classpath refid="hibernate.lib.path"/>
 </javac>
 </target>
 <target name="build" depends="compile" >
 <java classname="com.manning.hq.ch04.EventLoader">
 <classpath refid="runtime.classpath"/>
 </java>
 </target>

 <target name="schema-export" depends="compile" >
 <taskdef name="schemaexport"
 classname="org.hibernate.tool.hbm2ddl.SchemaExportTask">
 <classpath refid="runtime.classpath" />
 </taskdef>
 <schemaexport config="${src.java.dir}/hibernate.cfg.xml"/>

 </target>
</project>

This is mostly the same as the previous chapter’s build file, so let’s
focus on what has changed: You defined a new classpath, which you
use in several places throughout the build file. One of the places it is
used is the SchemaExport task, so you need to specify a few essential
elements, including

❂ The compiled persistent classes, Event.class and Location.class
files.

Adds mapping files to the classpath

Includes MySQL
driver specified above

Runs EventLoader class,
using newly defined classpath

Defines
SchemaExport task

Builds database schema
❂ The Hibernate library JAR files.

Licensed to Tricia Fu <tricia.fu@gmail.com>

102 CHAPTER 4 Associations and components
❂ The MySQL JDBC driver (since SchemaExport executes JDBC
statements, it needs the driver). You will very likely need to modify
B above to make the mysql.version and jdbc.driver.jar proper-
ties match your configuration.

❂ The hibernate.cfg.xml and the hbm.xml files, including Event.
hbm.xml and Location.hbm.xml files. For the sake of simplicity, we
are storing the mapping files alongside their corresponding Java
source files; this is why we add the ${src.java.dir} directory to the
runtime classpath.

❂ The log4j.properties file (we haven’t covered it yet, but it needs to
be at the root of the classpath, right next to hibernate.cfg.xml).4

Also note that you are using a new Ant task, called taskdef, which
allows you to define new tasks that you can invoke later in the Ant
file. Here you define a new task, SchemaExport, and link it to the
actual SchemaExportTask. You also use the runtime.classpath you
defined earlier.

Finally, the SchemaExport task needs a few configuration details, such
as which database to run against and the user/password information.
You have already provided this information in the hibernate.cfg.xml
file, and SchemaExport can use it if you provide its location.

With all this in place, you should be able to run the SchemaExport task
and build the database. And you can—but there is one more piece that
you should configure first: Hibernate’s logging framework.

4.2.1 Logging with log4j and Commons Logging

Hibernate uses a logging framework, which can help new developers
figure out just what it’s doing under the covers. It uses the Apache
Commons Logging framework, which is a simple API that allows users
to substitute different logging implementations without recompiling.
Developers can use the Java 1.4 java.util.logging framework or the

4 If you can’t handle the suspense, you can skip ahead to 4.2.1, where we discuss logging and

what the log4j.properties file is used for.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 103
popular open source log4j framework. So, just as JDBC is a database-
neutral API that abstracts away the specific data, Commons Logging is
a logging-neutral API.

By default, Hibernate is set up to use log4j, so the path of least resis-
tance is to use that. Hibernate will work just fine without configuring
logging, but it will nag you about it. So when you run the SchemaExport
task, you will see something like this:

[schemaexport] log4j:WARN No appenders could be found for logger
(org.hibernate.cfg.Environment).
[schemaexport] log4j:WARN Please initialize the log4j
 system properly.

By putting a log4j.properties file into the root of the classpath, you stop
the nagging and obtain information about Hibernate’s internal steps.
Use your text editor to create a new file called log4j.properties
(listing 4.8) in the /work/calendar/src/java directory.

Listing 4.8 log4j.properties, which configures Hibernate to log
information to the console

direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %5p %c{1}:%m%n

set log levels - for more verbose logging change
'info' to 'debug'
log4j.rootLogger=warn, stdout

log4j.logger.org.hibernate=warn

The purpose of the logging file is to specify three main things:

❂ How much information to log, and how “noisy” the output is (via
log levels)
Licensed to Tricia Fu <tricia.fu@gmail.com>

104 CHAPTER 4 Associations and components
❂ Where that information goes (via appenders)
❂ How the information is formatted (via patterns)

This listing includes a single appender, called stdout, which sends all of
the output to the command line. It configures the global root logger
(log4j.rootLogger) to log at the warn level. warn is “medium” noisy,
debug is extremely detailed, and fatal will stay quiet unless something
goes seriously wrong. In addition to the global logging, you can config-
ure it on a per-package level, if you only want the gritty details from
one particular package. You did so above, using log4j.log-

ger.org.hibernate=warn. This is the package where all the Hibernate
classes live. It allows you to set them to their loggers individually; for
example, you can set them to debug but leave the root logger at warn.

Hibernate also comes with a more detailed log4j.properties file, which
this one is based on. It contains a few more in-depth examples. Look in
the /applications/hibernate-3.0/src for it. You should also visit the log4j
and Commons Logging homepages, which can be found at http://log-
ging.apache.org/log4j/docs and http://jakarta.apache.org/commons/log-
ging, respectively, for more information and complete documentation
for both of these projects. Now, with this final piece in place, you can
go ahead and build the tables.

4.2.2 Running SchemaExport

With everything in place, you can now run the target that contains the
SchemaExport task. Every time you run it, the task will drop all the
tables and rebuild them. Let’s go ahead and run it (listing 4.9).

Listing 4.9 Using Hibernate to build the database

$ ant –f build4.xml clean schema-export
Buildfile: build4.xml

clean:
 [delete] Deleting directory C:\work\calendar\build\classes

init:

 [mkdir] Created dir: C:\work\calendar\build\classes

Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 105
compile:
 [javac] Compiling 3 source files
 to C:\work\calendar\build\classes

schema-export:
[schemaexport] drop table if exists events
[schemaexport] drop table if exists locations
[schemaexport] create table events (
[schemaexport] uid BIGINT NOT NULL AUTO_INCREMENT,
[schemaexport] name VARCHAR(255),
[schemaexport] start_date DATE,
[schemaexport] duration INTEGER,
[schemaexport] location_id BIGINT,
[schemaexport] primary key (uid)
[schemaexport])
[schemaexport] create table locations (
[schemaexport] uid BIGINT NOT NULL AUTO_INCREMENT,
[schemaexport] name VARCHAR(255),
[schemaexport] address VARCHAR(255),
[schemaexport] primary key (uid)
[schemaexport])
[schemaexport] alter table events add index (location_id), add
 constraint FKB307E11920EBB9E5 foreign key (location_id) references

locations (uid)

BUILD SUCCESSFUL
Total time: 4 seconds

Here you can see the SQL that is being run against the database. Sche-
maExport has converted the generic types of integer, Long and String,
that we specified in the mapping files into MySQL-specific column
types, including VARCHARs and BIGINTs.

Even though we didn’t specify column sizes, especially for strings,
Hibernate uses reasonable defaults. For MySQL, it’s using VARCHAR
(255). Other databases may have slightly different defaults, but Hiber-
nate’s dialects know how to do the right thing.

In addition to building the tables, SchemaExport performs a few optimi-

Drops the old tables
Generates correct
column types for MySQL

If unspecified,
strings turn into
VARCHAR (255)

Generates index for the foreign key
between the two tables
zations, based on the database. In this listing it builds indexes on the

Licensed to Tricia Fu <tricia.fu@gmail.com>

106 CHAPTER 4 Associations and components
foreign keys, which should make joins perform better. This is nice,
especially for developers who don’t happen to be database administra-
tors or who are just forgetful.5

As mentioned earlier, running this task will drop the database tables
and rebuild them from scratch every time. This is great if you are deep
in the “zone” of rapid development, but not so wonderful if you acci-
dentally drop a production database. If you are really paranoid and
don’t want to accidentally drop the database, you can use the Schema-
UpdateTask, which is discussed in chapter 7. It will “diff” your database
and selectively adds columns rather than dropping and rebuilding the
entire database.

4.2.3 Loading the Events

Since the tables are now in place, you can run your EventLoader and
populate the database with some sample data. You are going to run the
default Ant target, which will run the compiled EventLoader class:

Buildfile: build4.xml

init:

compile:

build:
 [java] Event and location saved!

BUILD SUCCESSFUL
Total time: 5 seconds

We ran only the default build task, and all of the classes were compiled
already from running SchemaExport before, so the only task that’s really
doing anything is the java task. If you look back at listing 4.6, you’ll
note that it’s configuring and building the SessionFactory, and

5 Also, despite the fact that it’s generating foreign key constraints, MySQL only supports for-
eign keys if you are using the InnoDB table types. So check the documentation for MySQL

on which table types you are using.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 107
persisting two objects. Building a SessionFactory is a reasonably
expensive operation, so you generally don’t want to do it too often.
Usually it’s constructed once when the application starts up.

While you have the success message, you should actually take a look at
the database and see what you have. Go ahead and open a new com-
mand window and start up the MySQL console. Listing 4.10 shows
how you check the database to see the new entries.

Listing 4.10 Inspecting the contents of the database

$ cd applications/mysql/bin

$ mysql -u root -p
Enter password:

mysql> use events_calendar;
Database changed
mysql> select * from events;
+-----+----------------+------------+----------+-------------+
| uid | name | start_date | duration | location_id |
+-----+----------------+------------+----------+-------------+
| 1 | Annual Meeting | 2004-12-01 | 60 | 1 |
+-----+----------------+------------+----------+-------------+
1 row in set (0.00 sec)

mysql> select * from locations;
+-----+--------------------------+------------------------+
| uid | name | address |
+-----+--------------------------+------------------------+
| 1 | Hilton Convention Center | 950 North Stafford St. |
+-----+--------------------------+------------------------+
1 row in set (0.00 sec)

Since we configured Event and Location to use native key generation,
MySQL is using auto_increment fields for both uid columns. By asso-
ciating the Event and Location, Hibernate knows to set the
location_id to match the uid column of the new Location.

Alternatively, if you aren’t a fan of the command line and you are using

a more recent MySQL version (4.1.5+), you can also choose to use the

Licensed to Tricia Fu <tricia.fu@gmail.com>

108 CHAPTER 4 Associations and components
optional download for the MySQL Query Browser, or other free SQL
tools such as TOAD, SQuirreL, or DBVisualizer.

4.2.4 Refactoring

Looking back at listing 4.6, you might notice that there is a fair amount
of exception handling and resource cleanup code. This was very neces-
sary in 2.x versions of Hibernate since Hibernate classes threw
checked exceptions, which you as a developer needed to handle. In
Hibernate 3, HibernateException is unchecked, extending Runtime-
Exception, so catching them is not strictly necessary. But because you
are dealing with database connections, you can’t leave it to the garbage
collector to clean up after you. You must explicitly close sessions and
end transactions manually. All this is necessary for older versions, but
it certainly clutters up the example code.

Refactoring: Extract HibernateFactory utility class

In this section, you will refactor6 the EventLoader class, with the intent
of simplifying the resource cleanup code. As a nice effect, you should
have a good reusable Hibernate utility class, which you can use in the
remainder of our examples. Create a new class HibernateFactory and
move the resource cleanup code from EventLoader into it. Listing 4.11
shows EventLoader2, which uses the refactored-out HibernateFactory.
Listing 4.12 shows the HibernateFactory utility class.

Listing 4.11 Refactored EventLoader2, with all new reduced
cleanup code

// package and import statements omitted
public class EventLoader2 {
 public static void main(String[] args) {
 // Event and Location population code omitted

 Session session = null;
 Transaction tx = null;

6 Refactoring is improving the internal structure of code, without altering its existing outward

behavior.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 109
 try {

HibernateFactory.buildSessionFactory();
 session = HibernateFactory.openSession();
 tx = session.beginTransaction();

 session.save(event);
 session.save(location);

 session.flush();
 tx.commit();
 System.out.println("Event and location saved!");
 } catch (HibernateException e) {
 HibernateFactory.rollback(tx);
 throw e; // Rethrow
 } finally {
 HibernateFactory.close(session);
 HibernateFactory.closeFactory();
 }
 }
 // Omitted Date Helper method
}

Listing 4.12 HibernateFactory utility class

package com.manning.hq.ch04;

import org.hibernate.SessionFactory;
import org.hibernate.Session;
import org.hibernate.Transaction;
import org.hibernate.HibernateException;

import org.hibernate.cfg.Configuration;
import org.apache.commons.logging.LogFactory;
import org.apache.commons.logging.Log;

public class HibernateFactory {
 private static SessionFactory sessionFactory;
 private static Log log =

LogFactory.getLog(HibernateFactory.class);

Factory builds and
stores the
SessionFactory

Allows you to
use logging
 public static SessionFactory buildSessionFactory()

Licensed to Tricia Fu <tricia.fu@gmail.com>

110 CHAPTER 4 Associations and components
 throws HibernateException {
 if(sessionFactory != null){
 closeFactory();
 }
 Configuration configuration = new Configuration();
 configuration.configure();
 sessionFactory = configuration.buildSessionFactory();
 return sessionFactory;
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }

 public static Session openSession() throws HibernateException {
 return sessionFactory.openSession();
 }

 public static void closeFactory() {
 if (sessionFactory != null) {
 try {
 sessionFactory.close();
 } catch (HibernateException ignored) {
 log.error("Couldn't close SessionFactory",
 ignored);
 }
 }
 }
 public static void close(Session session) {
 if (session != null) {
 try {
 session.close();
 } catch (HibernateException ignored) {
 log.error("Couldn't close Session", ignored);
 }
 }
 }
 public static void rollback(Transaction tx) {
 try {
 if (tx != null) {
 tx.rollback();
 }

Configures and stores
SessionFactory as a singleton

Allows direct
access if needed

Provides
convenience access
for opening sessions

Essentially ignores
exceptions
 } catch (HibernateException ignored) {

Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 111
 log.error("Couldn't rollback Transaction", ignored);
 }
 }
}

As you can see, you moved four responsibilities into your Hibernate-
Factory class: configuring the SessionFactory, closing the SessionFac-
tory, closing sessions, and rolling back transactions. The latter three
operations need a bit of null checking and throw their own unchecked
exceptions if they fail. Now you shouldn’t too concerned if you fail to
close a session, so you just log the exception and move on.

After configuring the SessionFactory, you store it in a static field,
which functionally makes this a Singleton pattern. Only one Session-
Factory will be created, and it can be used to open as many sessions as
are needed. Looking back at the refactored EventLoader2, you can see
that it’s quite a bit less cluttered and exception handling no longer
obscures the main point of the code.

Refactoring: Extract the SchemaExport task

Most Hibernate projects we have worked on use the SchemaExport
task, which makes it a good candidate for reuse. Now that you have the
SchemaExport task running correctly, let’s go ahead and extract the
schema-export target from our project build file into our reusable
hibernate-build.xml file. We also want to rename a few properties and
paths, so that the schema-export target is less coupled to our build.xml
file. Go ahead and add the following code to the hibernate-build.xml:

<target name="schema-export">
 <taskdef name="schemaexport"
 classname="org.hibernate.tool.hbm2ddl.SchemaExportTask"
 >
 <classpath refid="hibernate.runtime.classpath"/>
 </taskdef>
 <schemaexport config="${hibernate.cfg.xml.file}" />
</target>
Licensed to Tricia Fu <tricia.fu@gmail.com>

112 CHAPTER 4 Associations and components
As you can see, you are mostly copying and pasting from the
build.xml file. The biggest change is that hibernate-build.xml has a
few new properties and paths that allow the importing build.xml to
configure it. Making the cfg.xml file a property means that any build
file can import it and make it work for its directory structure. Also, to
keep naming conventions consistent, prefix the classpath with hiber-
nate, as in hibernate.lib.path. Now rework your build.xml, as shown
in listing 4.13.

Listing 4.13 build4.xml using the imported SchemaExport task

<project name="build4.xml" default="build">
 <!—Other Properties omitted -->
 <property
 name="hibernate.cfg.xml.file"
 value="${src.java.dir}/hibernate.cfg.xml"/>

 <import file="hibernate-build.xml"/>

 <path id="runtime.classpath">
 <path refid="project.classpath"/>
 <path refid="hibernate.lib.path"/>
 <pathelement location="${jdbc.driver.jar}"/>
 <pathelement location="${src.java.dir}"/>
 </path>
 <path id="hibernate.runtime.classpath"
 refid="runtime.classpath"/>

 <!-- Other Targets omitted -->
 <target name="schema-export"
 depends="compile,hibernate-build.schema-export"/>
</project>

Only the important changes from build.xml file are shown. You have
to configure the property and classpath that the imported file needs.
One of the changes requires a bit more explanation; as you can see in
the line

<target name="schema-export"
 depends="compile,hibernate-build.schema-export"/>

Adds property to
configure the location

of the config file

Adds new path
that hibernate-
build.xml needs

Overrides the imported
SchemaExport task
Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 113
there is still a SchemaExport task here, but didn’t you move that? Here
you are taking advantage of one of the import task’s ability to override
targets. When you run

$ ant schema-export

it will execute this target, which in turn runs the compile target and the
imported schema-export target from the hibernate-build.xml file.
Notice that the name of the target is hibernate-build.schema-export.
Look at the hibernate-build.xml file and check out the <project> ele-
ment:

<project name="hibernate-build">

You can reference an imported target by combining [project

name].[target name]. The outward behavior of build.xml is the same.
Run the schema-export target again and verify that it still builds the
database exactly as before. And with that you now have a reusable
schema-export target.

4.2.5 Finding Events

Storing linked objects is only half of the benefit of using a many-to-one
association. The other half is that when you find Events, the location
data will be pulled back into memory as well, through a join. Create a
simple EventFinder (listing 4.14), which loads the Event, and verify
that the location comes with it.

Listing 4.14 EventFinder, which loads a single Event by its primary key

package com.manning.hq.ch04;

import org.hibernate.*;
import org.apache.commons.logging.*;

public class EventFinder {
 private static Log log = LogFactory.getLog(EventFinder.class);

 public static void main(String[] args)
 throws HibernateException {
 HibernateFactory.buildSessionFactory();

 Session session = HibernateFactory.openSession();
 Transaction tx = session.beginTransaction();

Licensed to Tricia Fu <tricia.fu@gmail.com>

114 CHAPTER 4 Associations and components
 try {
 Event event = new Event("EventFinder");
 Location location = new Location("A Random Location");
 event.setLocation(location);
 session.save(location);
 session.save(event);
 session.flush();
 tx.commit();
 Event event2 = (Event) session.load(Event.class,
 event.getId());

 log.warn("Event: " + event2.getName());

 log.warn("Location1: " +
 ➥ event2.getLocation().getName());

 } finally {
 HibernateFactory.close(session);
 HibernateFactory.closeFactory();
 }
 }
}

Here you are inserting an Event into the database, and then looking it
up again. Since Hibernate sets the id of an object when it saves it, you
know the id of the Event. So you can retrieve it using the ses-
sion.load() method. This method loads an Event and any associated
objects, such as the Location. Then you use logging to display proper-
ties from both Event and Location.7 Finally, you do what should be
familiar cleanup code.

Next, go ahead and add another target to the build.xml file, which will
run the EventFinder:

<target name="find" depends="compile">
 <java classname="com.manning.hq.ch04.EventFinder">
 <classpath refid="runtime.classpath"/>

7 Why use Commons Logging instead of just System.out.println()? First, we have already
configured it for Hibernate, so it might as well just piggyback onto it. Second, we think it’s a

Loads a known event
by its primary key

Uses logging to display property values

Verifies
location
that gets
loaded
along with
event
good habit to get into; logging you put in for testing can be used later for debugging.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Building tables with Ant and SchemaExport 115
 </java>
</target>

After adding this target to the build, you can run the find target from
the command line:

$ ant –f build4.xml find

When the find target runs, you should see something like this:

find:
 [java] 15:42:43,947 WARN EventFinder: - Event: Annual Meeting
 [java] 15:42:43,947 WARN EventFinder: - Location: Hilton
 Convention Center

As you can see, both the Event and Location objects are loaded from
the database and their properties are displayed.

4.2.6 Cascades

You can make one more refinement to your model. In section 3.2, we
discussed collections and cascades. Since your location is just the oppo-
site end of a collection, you can use cascading here as well.

Saving the object graph

In your EventLoader, you had to explicitly save both the Event and
Location objects, even though you specifically set the Location object
on Event. If you remove the session.save(location) line from the
EventLoader, you will see an exception like this:

org.hibernate.TransientObjectException: object references
an unsaved transient instance - save the transient instance
before flushing: com.manning.hq.ch04.Location

Hibernate is telling you that you associated the Event, which is persis-
tent, with a nonpersistent (or transient) Location object. So when the
session.flush() method is called, inserting the Event, it balks at the

Location, which wasn’t made persistent. Needing to explicitly save one

Licensed to Tricia Fu <tricia.fu@gmail.com>

116 CHAPTER 4 Associations and components
associated object, the location isn’t too bad, but if Event had two or
three associated objects (or more), it’s just extra work for you. Hiber-
nate can minimize this unnecessary work by allowing you to define cas-
cading behavior relationships between your objects.

Location cascading

Cascading means that when you save, update, or delete an object, its
associated objects can be affected as well. In our case, you want the
Location to be saved when you save or update the Event. Modify the
Event.hbm.xml file and add a new attribute to the <many-to-one> ele-
ment, as shown here:

 <many-to-one name="location" column="location_id"
 class="Location" cascade="save-update" />

You have defined the location relationship as save-update. This means
any time you save a new event, the Location will be saved too. You can
test this out by modifying the EventLoader class and commenting out
the code that saves Location:

session.save(event);
// Use cascading to save the location
// session.save(location);

Rerun the build target and you should see that both Event and Loca-
tion have been saved. Refer back to section 3.2 for a complete list of
the possible cascades.

Associations in Hibernate define relations between tables. In the previ-
ous example, you have two tables, events and locations, and two
objects, Event and Location. So the general usage is one table equals
one object. Sometimes it is useful to have a more granular relationship,
where one table equals more than one object. Hibernate allows you to

4.3 Components
do this by using components. Components are not entities, like their

Licensed to Tricia Fu <tricia.fu@gmail.com>

Components 117
containing object, and are bound by their parent. They also do not
have an identity, and exist only if the parent entity does.

4.3.1 What’s in a component?

Components allow you to take several columns and group them into a
single object. Let’s look back at our Location object. Currently it has
an address field, which is a simple String. We just put in a single street,
but you could certainly stuff a full address into that one field, like so:

location.setAddress("950 North Stafford St. Arlington, VA 22204");

This will work, but you can’t do much with one amalgamated column
of address data. You probably want to break it up into several columns,
with street, city, state, and zip code. This would make your Location
object look like this:

public class Location implements Serializable {
 private Long id;
 private String name;
 private String streetAddress;
 private String city;
 private String state;
 private String zipCode;

 // getters and setter omitted
}

This would certainly work. But you could also refactor this code to
extract a component. Do this by grouping these new fields into a single
logical object, Address, and have Hibernate handle it as a component.
Figure 4.3 shows a UML diagram of what this would look like.

-streetAddress : string

-city : string

-state : string

-zipCode : string

Address

-id : long

name : string

Location

1

-address

1
-

Figure 4.3 Location and Address component UML diagram

Licensed to Tricia Fu <tricia.fu@gmail.com>

118 CHAPTER 4 Associations and components
Next modify your Location class:

public class Location implements Serializable{
 private Long id;
 private String name;
 private Address address = new Address();

 // Other getter/setters omitted

 public Address getAddress() { return address; }
 public void setAddress(Address address) {
 this.address = address;
 }
}

This is quite a bit shorter; all we have done is moved the four address-
related fields into a discrete Address class, shown in listing 4.15.

Listing 4.15 The Address object, our new component

package com.manning.hq.ch04;

public class Address {
 private String streetAddress;
 private String city;
 private String state;
 private String zipCode;

 public String getStreetAddress() { return streetAddress; }
 public void setStreetAddress(String streetAddress) {
 this.streetAddress = streetAddress;
 }

 public String getCity() { return city; }
 public void setCity(String city) {
 this.city = city;
 }

 public String getState() { return state; }
 public void setState(String state) {
 this.state = state;
 }
Licensed to Tricia Fu <tricia.fu@gmail.com>

Components 119
 public String getZipCode() { return zipCode; }
 public void setZipCode(String zipCode) {
 this.zipCode = zipCode;
 }
}

As you can see, the address fields have been grouped together under
that Address object. All you need to do now is map the columns from
the locations table to the Address object.

4.3.2 Mapping a component

Since Address is not a separate entity like Event or Location, and is a
component of Location, it has a strictly child-to-parent relationship to
its Location. Its mapping goes in the Location.hbm.xml file. Go ahead
and modify that file as shown in listing 4.16 and add the mapping infor-
mation for the address field there.

Listing 4.16 Mapping an Address component

<hibernate-mapping package="com.manning.hq.ch04">
 <class name="Location" table="locations">
 <id name="id" column="uid" type="long">
 <generator class="native"/>
 </id>
 <property name="name" type="string"/>
 <component name="address" class="Address" >
 <property name="streetAddress"
 column="street_address" type="string"/>
 <property name="city" type="string"/>
 <property name="state" type="string"/>
 <property name="zipCode"
 column="zip_code" type="string"/>
 </component>
 </class>
</hibernate-mapping>

Notice that each field on the Address component is mapped to a column

of its own. Also, you specified explicit column names for a few of the

Licensed to Tricia Fu <tricia.fu@gmail.com>

120 CHAPTER 4 Associations and components
columns, rather than using the property name as the column name.
Now since you have added a few columns, you need to update the data-
base schema. Run the schema-export task again, and look for the
rebuilding of the locations table:

$ ant –f build4.xml schema-export

Among other output, you should see this...

[schemaexport] create table locations (
[schemaexport] uid BIGINT NOT NULL AUTO_INCREMENT,
[schemaexport] name VARCHAR(255),
[schemaexport] street_address VARCHAR(255),
[schemaexport] city VARCHAR(255),
[schemaexport] state VARCHAR(255),
[schemaexport] zip_code VARCHAR(255),
[schemaexport] primary key (uid)
[schemaexport])

As you notice, four new columns have been added to the locations
table; these are the four columns that the Address component uses.
Now you can populate the Location object. Modify the EventLoader to
populate the Location using the new Address object:

Location location = new Location();
location.setName("Hilton Convention Center");
location.getAddress().setStreetAddress("950 North Stafford St.");
location.getAddress().setCity("Arlington");
location.getAddress().setState("VA");
location.getAddress().setZipCode("22204");

Event event = new Event();

Populating the Address isn’t much different from any of the other
objects. None of the rest of the EventLoader needs to be changed. You
can run the build target again and it should save Event, Location, and
the new Address object together. When Location is loaded, Hibernate

will populate the address fields just like the rest of the fields on Location.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Components 121
4.3.3 Why use a component?

Just because you can split one table into a bunch of objects, why would
you want to? In this case, it helps simplify the Location object by mak-
ing the details of an address a separate object. But it’s still yet another
object. Components are best used if there is going to be more than one
complex field or you want a place to put other address-specific meth-
ods or logic.

Multiple addresses

Consider the case of multiple addresses; perhaps Location needs both a
mailing address and billing address. It’s less duplication to add a sec-
ond address field than it is to add four additional fields. An updated
Location might look like this:

public class Location implements Serializable{
 private Long id;
 private String name;
 private Address mailingAddress = new Address();
 private Address billingAddress = new Address();

 // getters/setters omitted
}

We renamed the original address field to mailingAddress and added a
second field. You will still need to update the Location.hbm.xml file to
add the four additional columns, which map to the second field,
billingAddress.

Grouping domain logic

Another good reason to use components is so that you can group
related domain logic. For example, suppose you have a method that
parses a string and splits it into multiple fields. It makes sense to keep
that as close to the Address object as possible. Fine-grained objects are
more easily reusable. So you could populate the address as follows:

Address address = location.getBillingAddress();
address.parse("950 North Stafford St. Arlington, VA 22204");
Licensed to Tricia Fu <tricia.fu@gmail.com>

122 CHAPTER 4 Associations and components
Address’s parse method could handle multiple different address for-
mats, and generally evolve into a cohesive reusable object.

A single persistent object with no associations is a lonely one. The pur-
pose of this chapter was to demonstrate how Hibernate can allow you
to create flexible object models that can span multiple tables, or alter-
natively, create multiple objects for a single table.

You learned about the most basic object-relational association, the
many-to-one, which maps two related tables via a foreign key to two
Java objects. In the Java code, linking the objects is done just like any
other basic JavaBeans. After making objects persistent, via a ses-
sion.save() call, Hibernate will automatically manage the foreign keys
for you under the covers. You can also set cascading associations for
each field, which can automatically make an entire transient object
graph persistent with a single save() or update(). Once objects are
linked, you can pull back a web of objects from the database with a sin-
gle load() call.

To cut down on tedious duplicative work, Hibernate provides the Sche-
maExport task, which creates the database schema for you. It reads the
mapping files and persistent classes and generates the SQL commands
to create the necessary tables. It is very handy for rapid development,
because it keeps the database in sync with the persistent object model.

Finally, you learned how to create very fine-grained object models
using components. Components allow you to turn one table into multi-
ple objects. Components group several related columns into a single
object, helping organize your model and making reuse easier.

4.4 Summary
Licensed to Tricia Fu <tricia.fu@gmail.com>

5
Collections and
custom types

This chapter covers

• Persisting Java collections

• Creating custom Hibernate data types

• Converting components into custom types

he Java Collections API has been part of the Java Foundation Classes
(JFC) since the release of JDK 1.2. The Collections API was rapidly
adopted by developers because of its flexibility and relative power. Most

Java applications make use of at least a handful of the Collections classes, and
domain models typically use collections to maintain multiple children for a
parent object. For instance, our event management application makes use of
multiple collections. One example of this is the collection of Attendees
maintained by the Event class. If collections are used in the domain model, it’s
also logical that they would need to be persisted.

Hibernate provides support for the core Collections interfaces:
java.util.List, java.util.Map, and java.util.Set. Since there is a great
deal of variability in how collections can be used by the domain model,
Hibernate offers a number of ways to persist collections. Additionally,

T

123

Licensed to Tricia Fu <tricia.fu@gmail.com>

124 CHAPTER 5 Collections and custom types
Hibernate supports persisting arrays of objects and primitive types.
Persistent arrays are managed in a similar fashion to collections.

In the previous chapter we introduced components. You’ll recall that
components allow you to group several columns in a table and treat
them as a single object. Custom value types might appear to be similar
to components, but they offer quite a bit more power, as they allow you
to dictate how Hibernate will persist an object. They are typically used
when you want to persist data in a specific way, or provide support for
a data type not handled by Hibernate.

Although Hibernate offers a rich set of data types, they may not meet
every application requirement. If you need to, you can easily create a
new data type that you can then reuse in your other applications. Cus-
tom value types provide another extension mechanism for Hibernate.

Chapter goals

This chapter examines two important concepts: persisting collections
and arrays, and creating custom value types. As before, we’ll present
this information in the context of our event management application.
Once this chapter is complete, we will have accomplished the following:

❂ Created mapping definitions for collections and custom value types
❂ Examined the different types of collection associations
❂ Converted the Address instance introduced in chapter 4 from a

component to a custom value type

Assumptions

Since we’re building on the lessons in the previous chapter, you should
be able to

❂ Create a basic mapping document with properties, many-to-one
associations, and components

❂ Use Ant to create and update the application database
Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 125
Persisting collections with Hibernate is straightforward, but some
details can cause you problems if you’re not aware of them. We start
out this section discussing how Hibernate manages persistent collec-
tions, including the mapping definitions for one-to-many and many-to-
many associations. After that, we’ll give an example for each of the col-
lection types and address some of the infrequently used components,
such as idbags.

When a collection is persisted by Hibernate, it retains all of the
semantics of the Java collection interface. For example, when a
java.util.List is persisted, the index order of each element will
also be persisted. The index order is persisted so that the list can be
re-created when retrieved from the database.

Persisting the behavior of collections doesn’t stop at the
java.util.List interface. For instance, a persistent Set cannot contain
duplicate elements, and is naturally unordered. In the case of a
java.util.Map, the keys used must be unique.

Because Hibernate enforces the semantics of the collection class, how
can you just store a collection of objects without worrying about the
semantics of the underlying collection?

Hibernate supports another type of collection called a Bag. Bags are
basically unordered and unindexed Lists that can contain duplicate
elements. The notion of a Bag is Hibernate specific; there isn’t a Java
class or interface representing the Bag. In fact, there isn’t even a spe-
cific class for a Bag collection. Persistent objects wishing to have a Bag
collection can simply use a java.util.List. Hibernate handles the per-
sistence details for you. We’ll explain Bag usage later in the chapter.

To avoid confusing the Java collection classes with their Hibernate
counterparts, table 5.1 summarizes the persistent collection types with
their Java collection class.

5.1 Persisting collections and arrays
Licensed to Tricia Fu <tricia.fu@gmail.com>

126 CHAPTER 5 Collections and custom types
If you use a collection class that adds additional behavior to the imple-
mented interface, like a LinkedList (LinkedList implements List),
keep in mind that the additional behavior is not persisted. Behind the
scenes, Hibernate uses its own implementation of the core Collections
interfaces, primarily to support lazy collections. (We’ll discuss lazy col-
lections in section 5.1.4.) The custom interface implementations allow
Hibernate to intercept calls to the persistent collection and populate it
when needed.

5.1.1 Using interfaces

Hibernate’s custom collection implementations have another impact on
your persistent classes. When you’re creating the accessor methods for
the collection classes, it’s important to declare the collection interface,
from the java.util package, instead of having a class implement the

Table 5.1 Hibernate persistent collections compared with Java
collections

Hibernate
collection type

Java
collection type

Description

set java.util.Set Persists an unordered, unique col-
lection of values or objects.

map java.util.Map Persists a collection of key/value
pairs.

list java.util.List Persists an ordered, non-unique
collection of values or objects.

bag java.util.List Persists an unordered, non-unique
collection of values or objects.

array N/A Persists an indexed, non-unique
collection of values or objects.

primitive-array N/A Persists an indexed, non-unique
collection of primitive values.

idbag java.util.List Persists an unordered, non-unique,
many-to-many collection using a
surrogate key.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 127
interface. To illustrate, suppose you have a class with the following
accessors:

public void setGroups(ArrayList groups) { … }
public ArrayList getGroups() { … }

Since your accessor uses a java.util.ArrayList, you’ll have problems
at runtime when Hibernate tries to populate the collection. Instead,
you should use a java.util.List. This is because Hibernate provides
its own implementation of the Collections interfaces, partially illus-
trated in figure 5.1.

By examining figure 5.1, you can see that Hibernate simply implements
the Collections interfaces in the java.util package. When Hibernate
populates a collection, such as a java.util.List, the implementing
class is actually org.hibernate.collection.List.

We’ll get started by looking at mapping definitions for a collection. For
demonstration purposes, we’ll use collections of type java.util.Set.
Despite the different collection types supported by Hibernate, manag-
ing persistent collections is similar regardless of the underlying collec-
tion type. We’ll point out some subtle configuration and usage
differences as we encounter them.

java.util

org.hibernate.collection

<<Collection>>

java.util

List Set HashSetArrayList

<<List>> <<Set>>
Figure 5.1 Hibernate collection implementations

Licensed to Tricia Fu <tricia.fu@gmail.com>

128 CHAPTER 5 Collections and custom types
5.1.2 Mapping persistent collections

Persistent collections are defined in the mapping definition for the class
that contains them.

One-to-many associations

In chapter 3 we examined the mapping file for the Event class, which
had two <set> definitions. Let’s look at that portion of the mapping
file again:

<hibernate-mapping package="com.manning.hq">
 <class name="Event" table="events">
 …
 <set name="speakers">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
 </set>
 <set name="attendees">
 <key column="event_id"/>
 <one-to-many class="Attendee"/>
 </set>
 …
 </class>
</hibernate-mapping>

Looking at the portion of the Event mapping definition, you can see
that each <set> has a name attribute that corresponds to the property
names in the Event class. The <set> definitions correspond to the prop-
erties and accessors in the Event class shown in listing 5.1.

Listing 5.1 Set accessors in the Event class

public class Event {
 private Set speakers;
 private Set attendees;

 public void setSpeakers(Set speakers) {
 this.speakers = speakers;
 }
 public Set getSpeakers() {
 return this.speakers;

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 129
 }

 public void setAttendees(Set attendees) {
 this.attendees = attendees;
 }

 public Set getAttendees () {
 return this.attendees;
 }
 …
}

The <key> element, with the column attribute, names the column storing
the foreign key of the containing class. Earlier, we explained that for-
eign keys are used to link two tables. In this case, the purpose of the
foreign key is to link the Attendee to its parent Event instance. The
attendees table, used to store Attendee instances, has a column named
event_id containing the id of the Event instance that the Attendee
belongs to.

A one-to-many association links a single parent instance with multiple
children. In our example, we’re using Events and Attendees. We pre-
sented the mapping definition in the previous section; now let’s take a
look at the database schema for the association in figure 5.2.

We’ve defined the attendees set as one-to-many, meaning that one
Event instance will be associated to multiple Attendee instances.
Instead of a one-to-many collection association, we can define a many-
to-many association if Attendees can attend multiple Events.

As you can see, basic one-to-many associations are straightforward.
We’ll cover some options for one-to-many associations later in the
chapter. Many-to-many associations can be slightly more complicated,
but are still quite manageable.

events
id
...

bigint (pk)
...

attendees
id
event_id
...

bigint (pk)
bigint (fk)
...
Figure 5.2 A one-to-many association from events to attendees

Licensed to Tricia Fu <tricia.fu@gmail.com>

130 CHAPTER 5 Collections and custom types
Many-to-many associations

Many-to-many associations are quite a bit more interesting than one-
to-many associations. Instead of tables being directly linked through
the use of foreign keys, many-to-many associations require a collection
table storing the collection of object references.

Suppose Attendees can attend more than one Event. This is a natural
many-to-many mapping for the set of Attendees:

<set name="attendees" table="event_attendees">
 <key column="event_id"/>
 <many-to-many column="attendee_id" class="Attendee"/>
</set>

Note two changes in the many-to-many mapping definition. First, the
<set> element has a table attribute. This is the table used to store the
event-to-attendee mappings, so we’ve named it event_attendees. You
only use the table attribute for many-to-many associations, or when
persisting value objects, which we discuss later. Figure 5.3 shows this
table in relation to the events and attendees tables.

The other change we’ve made to the mapping definition is the <many-
to-many> element. Unlike the <one-to-many> element, the column
attribute is required. The column defined stores the id of the Attendee.

So far we’ve talked about many-to-many Sets, but what about the
other available Collections classes? You can also use Lists and Maps for
many-to-many collections. You’ll still need to specify the table

attribute that defines the name of the collection (or join) table, and
Lists and Maps still need an index column defined.

There is one last collection type we haven’t yet discussed: collections of
values.

event _attendees
event_id
attendee_id

bigint (fk)
bigint (fk)

attendees
id
...

bigint
...

events
id
...

bigint (pk)
...
Figure 5.3 A many-to-many table schema for Events and Attendees

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 131
Persisting collections of values

Of course, you don’t just deal with domain objects. You also work with
collections of Strings and primitive values. Suppose you need to per-
sist a collection of values, such as Strings or Integers, instead of a col-
lection of persistent objects (also called entity objects). The mapping
definition for a persistent set of Integers is straightforward:

<set name="ratings" table="event_ratings">
 <key column="event_id"/>
 <element column="rating" type="integer"/>
</set>

The table attribute defines the event_ratings table, which is used to
store the values. Like other collection mappings we’ve examined, the
<key> element is still required. If your collection is an array, list, or
map, you still need to define the <index> element to maintain the order
of the collection.

The <element> tag has two required attributes: column and type. Like
other elements in the mapping definition, these attributes define the
column used to store the value and the value’s type, respectively.

5.1.3 Collection types

So far, we’ve looked at the plumbing that goes into creating persistent
collections, concentrating on the Set interface. However, Hibernate
supports all of the major Java Collections interfaces, each with spe-
cial characteristics and capabilities. This section examines each collec-
tion type.

Sets

Since we’ve been using Sets in most of our examples, we don’t need to
spend much time with them here. In short, Sets in Hibernate retain the
semantics of the Java interface: Sets are a collection of unique objects.
A Set cannot contain duplicate elements, and Sets do not require an
<index> element, since they are unordered.
Licensed to Tricia Fu <tricia.fu@gmail.com>

132 CHAPTER 5 Collections and custom types
Lists and Arrays

Unlike their Set counterparts, Lists can contain duplicate elements.
Since Lists are indexed, meaning that contained elements are stored
at a specific location in the List, you need to define a <list-index>
element:

<list name="speakers">
 <list-index column="speaker_index"/>
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</list>

When a persistent list is retrieved from the database, the elements are
ordered according to the index value. This also applies to Arrays:

<array name="speakers">
 <list-index column="speaker_index"/>
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</array>

The <list-index> element defines the column storing the object’s index
in the collection or array. The index column type is an integer for Lists
and Arrays. An integer is used because it corresponds to the primitive
type used to refer to a specific element in an Array or a List. For
instance, the variable i is an integer in the code snippet shown here:

Object o = myObjectArray[i];

as well as this one:

Object o = myList.get(i);

Persistent arrays behave in the same manner as Lists. We’ve never had
a reason to use a persistent array since Lists are much more flexible.

In addition to requiring an index column, Lists cannot be mapped
inversely to the parent object. In sections 5.1.6 and 5.1.7, we explain

this problem and show how to work around it with Bags.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 133
Maps

Maps are probably the most distinctive of the persistent collections
because they behave exactly like their Java counterparts. Maps store
entries in key/value pairs, meaning that you retrieve the value by look-
ing up the associated key. Maps are also called dictionaries and associa-
tive arrays. Let’s look at two method signatures from the
java.util.Map interface:

Object Map.get(Object key)
Object Map.put(Object key, Object value)

The get(…) method returns the value object for the given key, if any.
The put(…) method stores the value in the map under the specified key.
If an object is already stored under the specified key, it is returned.
This means you can have only one value per key. The keys are stored in
an index column.

Maps use the index column to store the key for an entry in the map. In
Hibernate 3, indexes for Maps are defined using map-key elements.
Since keys for a java.util.Map can be of any type, you can specify just
about any type for the index value, including composite types. The
only type that can’t be used as a Map index is another collection.

To define a Map index, you’d use the type attribute to declare the map-
key as a String:

<map-key column="attendee_index" type="string" length="20"/>

This snippet defines a VARCHAR(20) column for a Map. This assumes
your map will use Strings for keys. Let’s look at the full mapping defi-
nition that assumes the Event class stores Speaker instances in a Map
instead of a List:

<map name="speakers">
 <map-key column="speakers_index" type="string" length="20"/>
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</map>
Licensed to Tricia Fu <tricia.fu@gmail.com>

134 CHAPTER 5 Collections and custom types
When inserting elements into the map, use a String for the key:

Map speakers = new HashMap();
speakers.put("speaker1", new Speaker());
speakers.put("speaker2", new Speaker());
Event event = new Event();
event.setSpeakers(speakers);

However, Maps provide another option to the standard <index> ele-
ment. If your collection is a Map, you can also use an entity for the
index. To do that, you need to use the <map-key-many-to-many> element
instead of the <index> element:

<map-key-many-to-many column="entity_index_column"
 class="EntityClass"/>

You’ll recall that when we refer to entity, we’re talking about a persis-
tent object with its own identity. We use the terms entity and persistent
object interchangeably. (As far as we’re concerned, there are entity
types and value types. Value types, like a String, do not have their own
identity.) While we’re not going to be using <map-key-many-to-many> in
the sample code, this element provides enough developer confusion to
warrant an example.

Suppose your Event class has a map of Speakers instead of a list. To
index the map, you want to use an entity object. For this example, cre-
ate a simple entity object called SpeakerKey. The SpeakerKey object has
two properties: an id and a string. Listing 5.2 shows the SpeakerKey
class and the corresponding Hibernate mapping.

Listing 5.2 SpeakerKey and associated mapping document

public class SpeakerKey {

 private Long id;
 private String value;
 // ... accessors omitted

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 135
}

<hibernate-mapping package="com.manning.hq">
 <class name="SpeakerKey" table="speaker_keys">
 <id name="id" type="long">
 <generator class="native"/>
 </id>
 <property name="value" type="string" length="20"/>
 </class>
</hibernate-mapping>

Now you need to define the mapping for your collection of Speakers:

<map name="speakers" table="event_speakers>
 <key column="event_id"/>
 <map-key-many-to-many column="speaker_key_id"
 class="SpeakerKey"/>
 <many-to-many column="speaker_id" class="Speaker"/>
</map>

This mapping declares that instances of SpeakerKey will be used as
the key when adding a Speaker to the map. With the details in place,
let’s take a look at the Hibernate-generated database schema shown
in figure 5.4.

Using a persistent object as the key for your maps may not be the most
common usage, but it’s important to realize that it’s an option if you
need it.

events
bigint (PK)id

...

speaker_keys
bigint
varchar(20)

id
value
...

speakers
bigint (FK)
bigint (FK)

event_id
speaker_key_id
Figure 5.4 Table schema for a map-key-many-to-many mapping

Licensed to Tricia Fu <tricia.fu@gmail.com>

136 CHAPTER 5 Collections and custom types
Bags

Sometimes it’s desirable to simply store a collection of objects without
worrying about ordering or duplicate elements. This is where Bags
come in.

When you declare a Bag in the mapping definition, it just corresponds
to a java.util.List in the domain object. Let’s look at a mapping snip-
pet, followed by the source code:

<bag name="speakers">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</bag>

You’ll notice that our Bag definition resembles a Set. Now let’s look at
the code:

import java.util.List;
…
public class Event {
 private List speakers;
 …
 public void setSpeakers(List speakers)
 this.speakers = speakers;

 public List getSpeakers() { return this.speakers; }
 …
}

From the JavaBean’s perspective, the collection of Speakers is a List.
However, using a Bag for Hibernate means you don’t need to explicitly
create an index column. Of course, a Set doesn’t require an index col-
umn either, but remember that a Set can’t contain duplicate elements,
whereas Bags can.

Next we’ll look at a variant of the Bag collection: idbag.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 137
idbags

idbags are a little difficult to explain, so we’ll start off with an example.
Suppose you have a many-to-many association between Events and
Speakers. Speakers can belong to the same Event multiple times, so we
can’t use a Set. We also need to ensure fast and efficient access to the
many-to-many table, event_speakers. We really need to be able to
assign a primary key to the event_speakers table. This is where idbags
come in.

An idbag allows you to assign a primary key to a row in a many-to-
many join table. Let’s look at the mapping definition:

<idbag name="speakers" table="event_speakers"
 lazy="true" cascade="all">
 <collection-id type="long" column="event_speakers_id">
 <generator-class="hilo"/>
 </collection-id>
 <key column="event_id"/>
 <many-to-many class="Speaker" column="speaker_id"/>
</idbag>

The above mapping definition results in the database schema shown in
figure 5.5.

Since the join table has its own primary key, accessing the join table is
very efficient. Specific rows can be updated, retrieved, and deleted

events
id
...

bigint (PK)
...

event _speakers
event_speaker_id
event_id
speaker_id

bigint (PK)
bigint
bigint

speakers
id
...

bigint (PK)
...

Figure 5.5 idbag schema
Licensed to Tricia Fu <tricia.fu@gmail.com>

138 CHAPTER 5 Collections and custom types
very quickly. idbags aren’t used very often, but because of their sup-
port for a primary key, they are useful in isolated cases.

With all of the collection types under our belt, let’s look at populating a
lazy collection.

5.1.4 Lazy collections

We’ve mentioned lazy collections a few times without going into them
in detail. A lazy collection is populated on demand. By “on demand,”
we mean that the collection of entity objects or values is populated only
when the application accesses the collection. Populating the collection
happens transparently when the collection is first accessed.

Why have lazy collections at all? A collection of objects can possibly
contain hundreds or thousands of objects, and the application may not
need to access the collection immediately, or at all. Loading hundreds
of persistent objects for no reason will certainly impact application per-
formance. It’s better to populate the persistent collection only when it
is needed.

To populate a lazy collection, the same Session instance used to
retrieve the persistent object from the database must be open when
the collection is populated. The following code incorrectly attempts to
load the collection of attendees for an Event after the Session has
been closed:

Session session = factory.openSession();
Event event = session.get(Event.class, eventId);
session.close();
Set attendees = event.getAttendees();

First, line 1 opens the Session instance. Then, the second line retrieves
the Event instance, and line 3 closes the Session. Finally, line 4
attempts to access the collection of Attendees. This line will throw a
LazyInitializationException because the Session is closed. If you’re

getting this exception in your code, it means that you’re trying to access

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 139
a lazy collection when the Session is closed. Here is the correct method
to populate a lazy collection:

Session session = factory.openSession();
Event event = session.get(Event.class, eventId);
Set attendees = event.getAttendees();
session.close();

First, the code opens the Session instance and retrieves the Event
instance. Then it accesses the collection of Attendees and closes the
open Session.

Persistent collections are now lazy by default in Hibernate 3. For non-
lazy collections, you must explicitly declare them as lazy="false" in
the mapping definition. For example:

<set name="attendees" lazy="false">
 <key column="event_id"/>
 <one-to-many class="Attendee"/>
</set>

Any collection, including collections of values and arrays, can be
declared not to be “lazy.” The obvious problem with lazy collections is
populating them in a multitier application, such as a web application,
where keeping the Session open can be tricky. We present a few solu-
tions to this problem in chapter 8.

In addition to being lazily populated, collections can be sorted. Sorted
collections are the topic of the next section.

5.1.5 Sorted collections

A common requirement when dealing with collections is to sort them
according to some criteria. The sorting criteria can be fixed or arbi-
trary, depending on application requirements. Hibernate supports
sorting sets, maps, and bags. If you always want a collection returned

in the same order, you can take advantage of the order-by attribute in

Licensed to Tricia Fu <tricia.fu@gmail.com>

140 CHAPTER 5 Collections and custom types
the <set> element. For instance, to return all Attendees for an Event
ordered by their last name, our mapping definition would be

<set name="attendees" order-by="last_name">
 <key column="event_id"/>
 <one-to-many class="Attendee"/>
</set>

The ordering value is the name of the SQL column, not the HQL prop-
erty. The SQL column is given because the ordering takes place in the
database. We can expand our ordering clause to sort by the first name
as well:

order-by="last_name, first_name"

You can specify the type of sort, ascending or descending, by including
the SQL keywords asc or desc, respectively, with desc as the default:

order-by="last_name, first_name asc"

Sorted collections use the LinkedHashMap or LinkedHashSet classes,
which are only available in JDK 1.4 or later. If JDK 1.4 is not avail-
able in your environment, or you want to order the collections yourself,
you may use the sort attribute to specify the type of sort to perform.

The sort attribute can take one of three values: unsorted, natural, or
the name of a class implementing the java.util.Comparator interface.
Unsorted results are returned in the order returned by the database.
The natural sorting of elements is determined using the com-

pareTo(Object) method in the java.lang.Comparable interface. A num-
ber of objects in the Java API, such as String, Long, and Double,
implement Comparable. Here is an example of using compareTo(Object)
with Strings:

String a = "a";
String b = "b";
System.out.println(a.compareTo(b));
Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 141
This code prints -1, because “a” is less than “b”. If you use the natu-
ral ordering of elements, they will typically be ordered from smallest
to largest.

The last option, an implementation of the Comparator interface, allows
custom sorting to be performed on the returned collection. A custom
Comparator implementation allows the developer to apply business
rules to sorting, or to enhance the natural ordering of a collection.

NOTE Don’t let the Comparable and Comparator interfaces confuse you.
While they sound similar, they have different functions. Compara-
ble is used to determine if two objects are the same or different.
The Comparator interface is used to enforce ordering on a collec-
tion of objects.

The shortcoming of the two approaches that we’ve looked at, SQL
ordering and Comparator, is that they are static. You can’t change them
at runtime. Hibernate gets around this by allowing you to apply a filter
to a collection. Filters let you sort collections according to some arbi-
trary field. Suppose you wanted to sort the Attendees for an Event by
their phone numbers:

Set sortedAttendees =
 session.filter(event.getAttendees(),
 "order by this.phoneNumber");

Since you’re passing the Set of Attendees, you refer to the collection in
the sort clause as this. Applying a filter to a lazy collection does not
cause the collection to be initialized, so filters may be used efficiently
with very large lazy collections.

Now that we’ve covered how to manage various types of persistent col-
lections, let’s discuss how to create and maintain associations between
two persistent classes.
Licensed to Tricia Fu <tricia.fu@gmail.com>

142 CHAPTER 5 Collections and custom types
5.1.6 Bidirectional associations

The Event class allows you to easily navigate from a parent Event
instance to a child Attendee instance. However, suppose you wanted to
make the association bidirectional, allowing an Attendee to navigate to
its parent Event? How would you go about implementing the bidirec-
tional association?

You must first define the Event property in the Attendee class and pro-
vide a many-to-one definition in the Attendee mapping file. Next, the
set in the Event must be defined as inverse. Setting the inverse
attribute to true informs the Hibernate runtime that the association is
bidirectional. The following snippet shows the relevant code from the
Attendee class:

public class Attendee {

 private Event event;
 …

 public void setEvent(Event event) {
 this.event = event;
 }

 public Event getEvent() {
 return this.event;
 }
}

The following snippet shows the relevant code from the mapping file:

<hibernate-mapping package="com.manning.hq">
 <class name="Attendee" table="attendees">
 …
 <many-to-one column="event_id" class="Event"/>
 …
 </class>
</hibernate-mapping>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 143
The inverse mapping from the Event class to the Attendee looks like
this:

<set name="attendees" inverse="true">
<key column="event_id"/>
<one-to-many class="Attendee"/>
</set>

This mapping results in the relational schema shown in figure 5.6.

Following these three steps, you can now navigate from the Attendee
instance to the parent Event instance. Remember that Hibernate only
supports bidirectional one-to-many collections for sets and bags. Bidi-
rectional lists, maps, and arrays are not supported, and Hibernate fails
to report the error if you have the following in a mapping definition:

<list name="speakers" inverse="true">…</list>

If you try to map a list, map, or array as inverse, the index column of
the collection will not be populated when it is persisted.1 Hibernate
won’t tell you about this mistake—it will just fail silently.

Next, we’ll take a look at mapping many-to-many bidirectional associa-
tions.

Many-to-many bidirectional associations

Many-to-many associations may also be bidirectional. In our earlier
example, we presented a many-to-many association for Attendees and

1 Okay, if you really want to map an indexed collection as inverse, you can manage the index

events
id
name
start_date
duration
...

bigint
varchar(100)
date
int
...

attendees
id
...
event_id

bigint
...
bigint

Figure 5.6 Bidirectional association for a one-to-many relationship
of the collection yourself. This is explained in detail at www.hibernate.org/116.html#A8.

Licensed to Tricia Fu <tricia.fu@gmail.com>

144 CHAPTER 5 Collections and custom types
Events. We’ll revisit that example and convert it into a bidirectional
association. Like the earlier bidirectional association, the Attendee
class must have a collection property for the attended Events:

public class Attendee {

 private Set events;
 …

 public void setEvent(Event events) {
 this.events = events;
 }

 public Set getEvents() {
 return this.events;
 }
}

The set of Events replaces the Event property from listing 5.2. Also, you
have to change the mapping document to contain a set of events:

<set name="events" table="event_attendees">
 <key column="attendee_id"/>
 <many-to-many class="Event"/>
</set>

You also need to update the Event mapping definition to reflect this
bidirectional association:

<set name="attendees" inverse="true">
 <key column="event_id"/>
 <many-to-many class="Attendee"/>
</set>

Figure 5.7 shows the relational schema for your bidirectional mapping.

Note that only the Event end of the association is defined as inverse.

For a many-to-many bidirectional association, one end of the

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persisting collections and arrays 145
association must be declared as inverse. The end declared as inverse
is significant because the non-inverse end will control the join table
that links the objects. Changes made to the inverse end of the associa-
tion will not be persisted.

Before we end our discussion on collections, let’s briefly cover how
cascades impact collections.

5.1.7 Cascading collections

We touched on cascades and how they relate to child objects in
chapter 3. Since cascades impact collections, we’ll take a closer look in
this section.

Suppose you create a new object, like our Event object, and add Speak-
ers to it:

Event event = new Event();
Set speakers = new HashSet();
speakers.add(new Speaker());
speakers.add(new Speaker());
speakers.add(new Speaker());
event.setSpeakers(speakers);

events
id
name
start_date
duration
...

bigint
varchar(100)
date
int
...

attendees
id
...
event_id

bigint
...
bigint

event _attendees
event_id
attendee_id

bigint
bigint

Figure 5.7 Bidirectional many-to-many association
Licensed to Tricia Fu <tricia.fu@gmail.com>

146 CHAPTER 5 Collections and custom types
When you try to persist this Event instance, you’ll get an error because
the Event references transient instances of the Speaker class. (Remem-
ber that transient means that the object hasn’t been persisted yet.) To
fix this problem, update your mapping definition for the set:

<set name="speakers" cascade="save-update">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</set>

Notice the addition of the cascade attribute. By specifying save-
update, you’re specifying that save and update operations made to the
parent Event should cascade to the Speakers. This way, Hibernate will
handle the newly created Speakers correctly and save them to the data-
base if necessary.

Another scenario is if you need to delete an Event. Since the speakers
table references the events table, deleting an Event would cause a for-
eign key violation in the speakers table. There is another cascade you
can use to ensure the child Speaker instances are deleted when the par-
ent Event is deleted:

<set name="speakers" cascade="delete">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</set>

When you delete the Event, the Hibernate service will cascade the
delete to the child collection. Of course, since you want to cascade all
of the operations to the child collection, you actually want to have the
following mapping:

<set name="speakers" cascade="all">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</set>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Implementing custom types 147
There is another cascade that fulfills a specific niche. Suppose you just
remove a Speaker instance from the Event:

Session session = factory.openSession();
Transaction trans = session.beginTransaction();
Event event = (Event) session.load(Event.class, myEventId);
Set speakers = event.getSpeakers();
speakers.remove(mySpeaker);
session.saveOrUpdate(event);

The problem is you’ll have an orphaned Speaker—a Speaker without a
parent Event. It would be handy if Hibernate would delete the orphan
since you don’t need it anymore:

<set name="speakers" cascade="all-delete-orphan">
 <key column="event_id"/>
 <one-to-many class="Speaker"/>
</set>

The all-delete-orphan cascade cleans up objects that are orphaned
by their parent. Hibernate caches the state of the original collection,
so it knows when objects are orphaned and, therefore, which objects
to delete.

In the next section, we examine extending the data types that Hiber-
nate can persist through the use of custom types.

While Hibernate provides a fairly complete set of data types, it’s
impossible to expect the existing data types to support every use case.
Because of this expected limitation, Hibernate allows developers to
create custom data types using the UserType and CompositeUserType
interfaces, both found in the org.hibernate.usertype package.

Custom user types allow you to tell Hibernate how to persist an object.

5.2 Implementing custom types
The UserType and CompositeUserType interfaces provide a bridge that

Licensed to Tricia Fu <tricia.fu@gmail.com>

148 CHAPTER 5 Collections and custom types
is used to persist another object. Most of the time, you can use a com-
ponent instead of a custom user type. Typically, the only time you must
use a custom user type is when you want to change how an object is
persisted. This section discusses creating and using custom user types.

5.2.1 UserTypes

In chapter 4 we presented the Address class as a component. In this
section, we’ll convert the Address class into a reusable UserType imple-
mentation and then examine the advantages of UserTypes. Let’s exam-
ine our existing Address class, as shown in listing 5.3.

Listing 5.3 The Address class as a component

public class Address implements java.io.Serializable {
 private String streetAddress;
 private String city;
 private String state;
 private String zipCode;

 public String getStreetAddress() {
 return streetAddress;
 }
 public void setStreetAddress(String streetAddress) {
 this.streetAddress = streetAddress;
 }

 public String getCity() {
 return city;
 }
 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }
 public void setState(String state) {
 this.state = state;
 }
 public String getZipCode() {

Licensed to Tricia Fu <tricia.fu@gmail.com>

Implementing custom types 149
 return zipCode;
 }
 public void setZipCode(String zipCode) {
 this.zipCode = zipCode;
 }
}

As you can see, the Address class is a simple JavaBean. If we want to
manage this class as a custom data type, we need to implement the
UserType interface. Listing 5.4 shows the AddressType class.

Listing 5.4 AddressType class

package com.manning.hq.ch05;

import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Types;

import com.manning.hq.ch04.Address;

import org.hibernate.Hibernate;
import org.hibernate.HibernateException;
import org.hibernate.usertype.UserType;

public class AddressType implements UserType {

 private int[] types = {Types.VARCHAR, Types.VARCHAR,
 Types.VARCHAR, Types.VARCHAR};

 public int[] sqlTypes() {
 return types;
 }

 public Class returnedClass() {
 return Address.class;
 }

 public boolean equals(Object a, Object b)
 throws HibernateException {

 return (a == b) ||

 ((a != null) && (b != null) && (a.equals(b)));

Licensed to Tricia Fu <tricia.fu@gmail.com>

150 CHAPTER 5 Collections and custom types
 }

 public Object nullSafeGet(ResultSet rs,
 String[] names, Object o)
 throws HibernateException, SQLException {

 Address addr = (Address) o;
 addr.setStreetAddress((String)
 Hibernate.STRING.nullSafeGet(rs, names[0]));
 addr.setCity((String)
 Hibernate.STRING.nullSafeGet(rs, names[1]));
 addr.setState((String)
 Hibernate.STRING.nullSafeGet(rs, names[2]));
 addr.setZipCode((String)
 Hibernate.STRING.nullSafeGet(rs, names[3]));
 return addr;
 }

 public void nullSafeSet(PreparedStatement ps, Object o, int i)
 throws HibernateException, SQLException {

 Address addr = (Address) o;
 Hibernate.STRING.nullSafeSet(ps,
 addr.getStreetAddress(), i);
 Hibernate.STRING.nullSafeSet(ps, addr.getCity(), i+1);
 Hibernate.STRING.nullSafeSet(ps, addr.getState(), i+2);
 Hibernate.STRING.nullSafeSet(ps, addr.getZipCode(), i+3);
 }

 public Object deepCopy(Object o) throws HibernateException {
 if (o == null) return null;
 Address origAddr = (Address) o;
 Address newAddr = new Address();
 String streetAddr =
 new String(origAddr.getStreetAddress());
 newAddr.setStreetAddress(streetAddr);
 newAddr.setCity(new String(origAddr.getCity()));
 newAddr.setState(new String(origAddr.getState()));
 newAddr.setZipCode(new String(origAddr.getZipCode()));
 return newAddr;
 }
Licensed to Tricia Fu <tricia.fu@gmail.com>

Implementing custom types 151
 public boolean isMutable() {
 return true;
 }

}

You can see that the AddressType class wraps the Address class so it can
be managed by Hibernate. Custom user types are not persisted to the
database, but they provide information on how to persist another class
to the database. (We have intentionally repeated that a few times. It’s
easy to lose sight of the actual purpose of custom types.) In our case,
the AddressType class provides the bridge between our Address class
and the Hibernate runtime. Notice that our Address class implements
the java.io.Serializable interface. This is required if you want the
class to be cached by a second-level caching service.

The AddressType class appears to be more complicated than you would
expect, but it’s really quite simple. Let’s take a detailed look at the
methods in the class.

The sqlTypes() method returns an array of java.sql.Types constants
matching the property types of the Address class:

public int[] sqlTypes() {
 return new int[] {Types.VARCHAR, Types.VARCHAR,
 Types.VARCHAR, Types.VARCHAR};
}

Since the Address class has four properties of type java.lang.String,
you use the Types.VARCHAR constant. Suppose the Address class had a
timestamp storing the creation time of the address. In that case, you’d
use the Types.TIMESTAMP constant for that property’s SQL type.

The SQL types are used by the PreparedStatements in the
nullSafeGet(…) and nullSafeSet(…) methods. The nullSafeSet(…)

method populates an Address instance from the ResultSet object. As

Licensed to Tricia Fu <tricia.fu@gmail.com>

152 CHAPTER 5 Collections and custom types
you’ve probably noticed, you’re using an inner class of the Hibernate
object: STRING. Since your Address object just contains Strings, you’re
going to use Hibernate’s existing functionality rather than performing
your own null checking. Once the object is populated, it is returned:

public Object nullSafeGet(ResultSet rs, String[] names, Object o)
 throws HibernateException, SQLException {

 Address addr = (Address) o;
 addr.setStreetAddress((String)
 Hibernate.STRING.nullSafeGet(rs, names[0]));
 addr.setCity((String)
 Hibernate.STRING.nullSafeGet(rs, names[1]));
 addr.setState((String)
 Hibernate.STRING.nullSafeGet(rs, names[2]));
 addr.setZipCode((String)
 Hibernate.STRING.nullSafeGet(rs, names[3]));
 return addr;
}

Next let’s look at nullSafeGet(…), the partner method to
nullSafeGet(…):

public void nullSafeSet(PreparedStatement ps, Object o, int i)
 throws HibernateException, SQLException {

 Address addr = (Address) o;
 Hibernate.STRING.nullSafeSet(ps, addr.getStreetAddress(), i);
 Hibernate.STRING.nullSafeSet(ps, addr.getCity(), i+1);
 Hibernate.STRING.nullSafeSet(ps, addr.getState(), i+2);
 Hibernate.STRING.nullSafeSet(ps, addr.getZipCode(), i+3);
}

Since the nullSafeGet(…) method populates an object from a Result-
Set, it makes sense that the nullSafeSet(…) method performs the
opposite task and populates a PreparedStatement from an Address
instance. Here you’ve set four properties on the PreparedStatement,

incrementing the index variable, i, each time. Again you’re using the

Licensed to Tricia Fu <tricia.fu@gmail.com>

Implementing custom types 153
Hibernate.STRING class to check for null values when populating the
statement.

This leaves you with the deepCopy(Object) method:

public Object deepCopy(Object o) throws HibernateException {
 if (o == null) return null;
 Address origAddr = (Address) o;
 Address newAddr = new Address();
 String streetAddr =
 new String(origAddr.getStreetAddress());
 newAddr.setStreetAddress(streetAddr);
 newAddr.setCity(new String(origAddr.getCity()));
 newAddr.setState(new String(origAddr.getState()));
 newAddr.setZipCode(new String(origAddr.getZipCode()));
 return newAddr;
}

The deepCopy(Object) method returns a copy of the persistent state of
the object. Persistent object associations and collections are not copied
in this method; it copies only the persistent properties of the object. It is
important to create a correct implementation of this method to avoid
threading problems, with multiple objects referring to the same objects
in memory.

When you create a deep copy of an object, not only do you copy the
object, but you also copy all of the objects referred to by that object.
This is different than the Object’s clone() method, which only per-
forms a shallow copy. A shallow copy does not create a new copy of the
referred objects. Since object graphs can be quite large, creating a deep
copy correctly can be difficult.

With your AddressType created, you need to update the mapping defi-
nition file to use it.

Using UserTypes

Now that you have the completed AddressType class, how do you use
it? Like most things related to persistent classes and Hibernate, you

edit the mapping definition to inform it of the UserType implementation:

Licensed to Tricia Fu <tricia.fu@gmail.com>

154 CHAPTER 5 Collections and custom types
<property name="address" type="AddressType"/>

And that’s it. If your UserType maps to multiple database columns, you
can use the column element to specify the columns to use in the rela-
tional table:

<property name="address" type="AddressType">
 <column name="street_address"/>
 <column name="city"/>
 <column name="state"/>
 <column name="zip_code"/>
</property>

Now that we’ve reviewed the UserType interface, let’s examine a slightly
more complicated, and interesting, interface: CompositeUserType.

5.2.2 Implementing CompositeUserTypes

There are two primary differences between UserType and Compos-
iteUserType. First, the class bridged by the CompositeUserType does
not need to implement the java.io.Serializable interface to be
cachable by a caching service. Second, you are able to query on
properties of the bridged class, allowing for a great deal of flexibility
in HQL statements.

The more interesting feature of the CompositeUserType interface is the
ability to query properties of the persisted object. Suppose we imple-
mented the CompositeUserType interface for our Address class instead
of UserType. Let’s examine our new class, shown in listing 5.5. Note
that we’ve omitted methods that are identical to the AddressType,
shown in listing 5.4.

Listing 5.5 The CompositeAddressType class

package com.manning.hq.ch05;

import java.io.Serializable;
// .. AddressType imports omitted

import org.hibernate.usertype.CompositeUserType;

Licensed to Tricia Fu <tricia.fu@gmail.com>

Implementing custom types 155
import org.hibernate.engine.SessionImplementor;
import org.hibernate.type.Type;

public class CompositeAddressType implements CompositeUserType {

 // .. AddressType methods omitted

 private String[] propertyNames = {"streetAddress", "city",
 "state", "zipCode"};
 private Type[] propertyTypes = {Hibernate.STRING,
 Hibernate.STRING,
 Hibernate.STRING,
 Hibernate.STRING};

 public String[] getPropertyNames() {
 return propertyNames;
 }

 public Type[] getPropertyTypes() {
 return propertyTypes;
 }

 public Object getPropertyValue(Object component,
 int property) {
 Address addr = (Address) component;
 switch (property) {
 case 0:
 return addr.getStreetAddress();
 case 1:
 return addr.getState();
 case 2:
 return addr.getState();
 case 3:
 return addr.getZipCode();
 }
 throw new IllegalArgumentException(property +
 " is an invalid property index for class type " +
 component.getClass().getName());
 }

 public void setPropertyValue(Object component, int property,
 Object value) {

 Address addr = (Address) component;

 String propertyValue = (String) value;

Licensed to Tricia Fu <tricia.fu@gmail.com>

156 CHAPTER 5 Collections and custom types
 switch (property) {
 case 0:
 addr.setStreetAddress(propertyValue);
 return;
 case 1:
 addr.setState(propertyValue);
 return;
 case 2:
 addr.setState(propertyValue);
 return;
 case 3:
 addr.setZipCode(propertyValue);
 return;
 }
 }

 public Object assemble(Serializable cached,
 SessionImplementor session, Object owner)
 throws HibernateException {

 return deepCopy(cached);
 }

 public Serializable disassemble(Object value,
 SessionImplementor session)
 throws HibernateException {

 return (Serializable) deepCopy(value);
 }

 public Object nullSafeGet(ResultSet rs, String[] names,
 SessionImplementor session, Object o)
 throws HibernateException, SQLException {
 // TODO Auto-generated method stub
 return null;
 }

 public void nullSafeSet(PreparedStatement ps,
 Object o, int i, SessionImplementor session

 throws HibernateException, SQLException {
 // TODO Auto-generated method stub
 }
}

Licensed to Tricia Fu <tricia.fu@gmail.com>

Implementing custom types 157
While the method signatures for the CompositeUserType look imposing
at first glance, implementing them is fairly simple. The cost of the extra
implementation time gives you the ability to query on properties of the
Address class, something your AddressType class cannot do. Let’s look
at some HQL examples:

select l from Location l where l.address.streetAddress
 like '% Birch St.%'

This query returns all instances of the Location class located on “Birch
St.” Here’s another example:

select l from Location l where l.address.city
 in ('Miami', 'London', 'Tokyo');

This time we’re querying on Location instances located in Miami, Lon-
don, or Tokyo. Don’t worry if the HQL is somewhat confusing right
now. We’ll cover it in detail in the next chapter.

One requirement of the UserType interface is that the underlying class
must implement the Serializable interface so that the class may be
cached. This means that our Address class must implement Serializ-
able. The CompositeUserType interface doesn’t have this requirement.
Instead, it provides two methods to manage interacting with the cache:
assemble(…) and disassemble(…). These methods are never called by
the user; instead, they are used internally by Hibernate. Here are the
method signatures for these two methods:

public Object assemble(Serializable cached,
 SessionImplementor session,
 Object owner)
 throws HibernateException

public Serializable disassemble(Object obj,
 SessionImplementor session)
 throws HibernateException
Licensed to Tricia Fu <tricia.fu@gmail.com>

158 CHAPTER 5 Collections and custom types
The assemble(…) method provides the opportunity to reconstruct the
cached object from a Serializable representation. To perform the con-
version to a persistent object, you should at least perform a deep copy
using the cached instance. Creating a cachable instance of the persis-
tent object is performed using the disassemble(…) method. Like the
assemble(…) method, the developer should at least perform a deep copy
of the object to be cached.

Implementing the assemble(…) and disassemble(…) methods is optional
if the object being persisted implements the Serializable interface. In
a typical application, the domain objects will have implemented the
interface, so you shouldn’t have any problems getting around this
requirement.

Of course, you can also query individual properties of components.
The two HQL examples will work just as well with components as
with custom user types. Why go through the trouble of creating custom
types at all?

Remember that the core purpose behind custom user types is not to
support types that are already easily handled by Hibernate, but to sup-
port the unique cases where Hibernate doesn’t have the data type that
your application requires. A common use for a custom type is to repre-
sent phone numbers.

Phone numbers typically have four components: country code, area
code, exchange, and line number, as shown in figure 5.8.

Depending on where you are in the world, phone numbers may have a
different number of digits, but the basic scheme is consistent. You can

1
Country
Code

555
Exchange

1212
Line

Number

212
Area
Code
Figure 5.8 Phone number scheme

Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 159
easily map the four parts of a phone number as a component, but if the
scheme changes, you will need to update your mapping definitions.
Using a custom type to persist the phone number, you can easily
change how the phone number is persisted without changing how it is
represented to the persistent classes.

While you will typically use components instead of custom value types,
custom value types are an important extension mechanism for Hiber-
nate. Developers often overlook them because of their apparent com-
plexity, but appropriate use of custom types can greatly simplify
persistence problems and make your application more portable.

This chapter presented two primary Hibernate features: persistent col-
lections and custom data types. Persisting collections can be difficult
when using JDBC or EJBs, but Hibernate makes it fairly simple.

Support is provided for the basic collection types: arrays, lists, maps,
and sets. It’s possible to store collections of persistent objects or basic
types, like Strings or Dates. Persistent collections can also be lazily
populated to improve performance of large collections.

Although Hibernate provides a large number of data types, you may
need custom types for your application. The UserType and Composite-
UserType interfaces provide the ability to create new data types to be
managed by Hibernate. While both interfaces provide support persist-
ing objects, CompositeUserTypes support querying on object parame-
ters, unlike UserTypes.

It’s important to remember that implementations of the custom type
interfaces are not persisted. Instead, implementations provide the
Hibernate runtime with additional information necessary to persist
another object. For instance, our AddressType class managed the per-
sistence of the Address class.

5.3 Summary
Licensed to Tricia Fu <tricia.fu@gmail.com>

160 CHAPTER 5 Collections and custom types
While similar to components, custom user types insulate your applica-
tion from changes made to the persistent object. If a component
changes, you are forced to update the mapping files using the compo-
nent. If changes are made to a custom user type, you only need to
update the implementing user type class.
Licensed to Tricia Fu <tricia.fu@gmail.com>

6
Querying
persistent objects

This chapter covers

• Querying persistent objects using Hibernate

• The Hibernate Query Language

ith a solid grasp of Hibernate basics, we need to move on to querying
our persistent objects. Instead of SQL, Hibernate has its own, object-
oriented (OO) query language called Hibernate Query Language

(HQL). HQL is intentionally similar to SQL so that it leverages existing
developer knowledge and thus minimizes the learning curve. It supports the
commonly used SQL features, wrapped into an OO query language. In some
ways, HQL is easier to write than SQL because of its OO foundation.

Why do we need HQL? While SQL is more common and has been stan-
dardized, vendor-dependent features limit the portability of SQL state-
ments between different databases. HQL provides an abstraction
between the application and the database, and so improves portability.
Another problem with SQL is that it is designed to work with relational
tables, not objects. HQL is optimized to query object graphs.

This chapter introduces you to HQL gradually and quickly moves on

W

161

to more complicated features and queries. First we’ll cover the major

Licensed to Tricia Fu <tricia.fu@gmail.com>

162 CHAPTER 6 Querying persistent objects
concepts important to using HQL, such as executing queries using a
few different classes. After the introductory material is covered, we’ll
spend the rest of the chapter with HQL examples. If you have a
solid grasp of SQL, you shouldn’t have any problem picking up the
key concepts.

Chapter goals

We have three primary goals in this chapter:

❂ Exploring the basics of HQL, including two query mechanisms
❂ Identifying variations in HQL queries, including named and posi-

tional parameters
❂ Understanding how to query objects, associations, and collections

Assumptions

Since HQL is based on SQL, we anticipate that you

❂ Understand SQL basics, including knowledge of joins, subselects,
and functions.

❂ Have a firm grasp of JDBC, including the PreparedStatement and
ResultSet interfaces.

Hibernate queries are structured similar to their SQL counterparts,
with SELECT, FROM, and WHERE clauses. HQL also supports
subselects if they are supported by the underlying database. Let’s jump
in with the most basic query we can create:

from Event

This query will return all of the Event instances in the database, as well
as the associated objects and non-lazy collections. (You’ll recall from
chapter 5 that, by default, persistent collections are populated only
when initially accessed.) The first thing you probably noticed was the

6.1 Using HQL
lack of the SELECT clause in front of the FROM clause. Because we

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using HQL 163
want to return complete objects, the SELECT clause is implied and
doesn’t need to be explicitly stated.

How can we execute this query? Two methods are provided in the
Hibernate API to execute queries. The Session interface has three
find(…) methods that can be used for simple queries. The Query inter-
face can be used for more complex queries.

6.1.1 session.find(…)

In Hibernate 2, the Session interface has three overloaded find(…)
methods, two of which support parameter binding. Each of the meth-
ods returns a java.util.List with the query results. For instance, let’s
execute our earlier query:

List results = session.find("from Event");

The Session interface also has a set of methods, named iterate(…),
which are similar to the find(…) methods. Although they appear to be
the same, each of methods functions differently. The find methods
return all of the query results in a List, which is what you’d expect.
The objects in the list are populated when the query is executed. How-
ever, the iterate methods first select all of the object ids matching a
query and populate the objects on demand as they are retrieved from
the Iterator. Here’s an example:

Iterator results = session.iterate("from Event");
while (results.hasNext()) {
 Event myEvent = (Event) results.next();
 // …
}

When the Iterator is returned, only the id values for the Event
instances have been retrieved. Calling results.next() causes the next
Event instance to be retrieved from the database. The iterate methods
are typically less efficient than their find counterparts, except when
dealing with objects stored in a second-level cache.
Licensed to Tricia Fu <tricia.fu@gmail.com>

164 CHAPTER 6 Querying persistent objects
Hibernate stores objects in a second-level cache based on the object’s
class type and id. The iterate methods can be more efficient if the
object is already cached, since only the matching object ids are
returned on the initial query and the remainder of the object is
retrieved from the cache.

The find methods in the Session interface are ideal for simple queries.
However, most applications typically require at least a handful of com-
plex queries. The Query interface provides a rich interface for retriev-
ing persistent objects with complicated queries. If you’re using
Hibernate 3, you must use the Query interface since the find methods in
the Session interface have been deprecated (although they have been
moved and are still available in the org.hibernate.class.Session sub-
interface). Hibernate 3 applications should use createQuery() and get
NamedQuery() for all query execution.

6.1.2 The Query interface

Instances of the Query interface are created by the Session. The Query
interface gives you more control over the returned objects, such as lim-
iting the number of returned objects, setting a timeout for the query,
and creating scrollable result sets. Let’s execute our previous query
using the Query interface:

Query q = session.createQuery("from Event");
List results = q.list();

If you want to set bounds on the number of Event objects to return, set
the maxResults property:

Query q = session.createQuery("from Event");
q.setMaxResults(15);
List results = q.list();

The Query interface also provides an iterate() method, which behaves

identically to Session.iterate(…). Another feature of the Query

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using HQL 165
interface is the ability to return query results as a ScrollableResults
object. The ScrollableResults object allows you to move through the
returned objects arbitrarily, and is typically useful for returning paged
collections of objects, commonly found in web applications.

Of course, our static queries aren’t very useful in real applications.
Real applications need to populate query parameters dynamically.
JDBC’s PreparedStatement interface supports setting positional query
parameters dynamically, but populating queries can be cumbersome.

Developers must know the type of each parameter in order to call the
correct setter method in the interface. They also have to keep track of
which positional parameter they are setting. Hibernate expands and
improves on this notion by providing both positional and named
query parameters.

Positional parameters

Positional parameters in Hibernate are very similar to their Prepared-
Statement counterparts. The only significant difference is that the posi-
tion index starts at 0 instead of 1, as in the PreparedStatement.

Suppose you want to return all of the Event instances with a certain
name. Using a positional parameter, your code would look like

Query q = session.createQuery("from Event where name = ? ");
q.setParameter(0, "Opening Plenary");
List results = q.list();

Note that you didn’t need to set the type of parameter; the Query
object will attempt to determine the type using reflection. It’s also pos-
sible to set a parameter to a specific type using the org.hiber-
nate.Hibernate class:

q.setParameter(0, "Opening Plenary", Hibernate.STRING);

Named parameters are a more interesting, and more powerful, way to
populate queries. Rather than using question marks for parameter

placement, you can use distinctive names.

Licensed to Tricia Fu <tricia.fu@gmail.com>

166 CHAPTER 6 Querying persistent objects
Named parameters

The easiest way to explain named parameters is with an example.
Here’s our earlier query with a named parameter:

from Event where name = :name

Instead of the ? to denote a parameter, you can use :name to populate
the query:

Query q = session.createQuery("from Event where name = :name");
q.setParameter("name", "Opening Plenary");
List results = q.list();

With named parameters, you don’t need to know the index position of
each parameter. Named parameters may seem like a minor feature, but
they can save time when populating a query—instead of counting
question marks and making sure you’re populating the query correctly,
you simply match the named parameters with your code.

If your query has a named parameter that occurs more than once, it
will be set in the query each time. For instance, if a query has the
parameter startDate twice, it will be set to the same value:

Query q = session.createQuery("from Event where "+
 "startDate = :startDate or endDate < :startDate");
q.setParameter("startDate", eventStartDate);
List results = q.list();

We’ve covered the two styles of query parameters supported by Hiber-
nate. For the purpose of our examples, we’ve been displaying the que-
ries as hardcoded in application code. Anyone who’s built an
application will know that embedding your queries can quickly create a
maintenance nightmare. Ideally, you would store the queries in a text
file, and the most natural place to do that with Hibernate is in the map-
ping definition file.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Using HQL 167
Named queries

Named queries, not to be confused with named parameters, are queries
that are embedded in the XML mapping definition. Typically, you put
all of the queries for a given object into the same file. Centralizing your
queries in this fashion makes maintenance quite a bit easier. Named
queries are placed at the bottom of the mapping definition files:

<query name="Event.byName">
<![CDATA[from Event where name=?]]>
</query>

Note that here you wrap the actual query in a CDATA block to ensure
that the XML parser skips the query text. This is necessary since some
symbols, such as < and >, can cause XML parsing errors.

There is no limitation on the number of query elements you can have in
a mapping file; just be sure that all of the query names are unique. You
may name the queries anything you would like, although we have
found that prefixing the name of the persistent class is helpful.

Accessing named queries is simple:

Query q = session.getNamedQuery("Event.byName");
…
List results = q.list();

You should take advantage of named queries when creating your map-
ping definitions. If you add or change a property name, you can also
update all of the affected queries at the same time.

There is certainly no rule about storing your HQL queries in the
mapping definition. You can just as easily put the queries into a
resource bundle and provide your own mechanism to pass them to
the query interfaces.

Now that you know how to query and some of the basics, what happens

when you execute a query, using either the Session or Query interface?

Licensed to Tricia Fu <tricia.fu@gmail.com>

168 CHAPTER 6 Querying persistent objects
First, the Hibernate runtime compiles the query into SQL, taking into
account the database-specific SQL dialect. Next, a PreparedStatement
is created and any query parameters are set. Finally, the runtime exe-
cutes the PreparedStatement and converts the ResultSet into instances
of the persistent objects. (It’s a little more complicated than the three-
sentence description, but I hope you get the idea.) When you retrieve
persistent objects, you also need to retrieve the associated objects, such
as many-to-ones and child collections.

6.1.3 Outer joins and HQL

Using SQL, the most natural way to retrieve data from multiple tables
with a single query is to use a join. Joins work by linking associated
tables using foreign keys. Hibernate uses an outer join to retrieve asso-
ciated objects. When the HQL is compiled to SQL, Hibernate creates
the outer join statements for the associated objects (assuming you’ve
enabled outer joins—see chapter 3 for an explanation of the
max_fetch_depth property). This results in one query returning all of
the data necessary to reconstitute an Event instance. All of this happens
behind the scenes in the Hibernate runtime. Compare this with writing
the following SQL:

select e.*, l.* from events as e
 left outer join locations as l on e.location_id = l.id

Clearly, HQL is much more concise than SQL. It’s also possible to dis-
able outer join fetching for a specific association by setting the fetch
attribute in the mapping definition, as shown here:

<many-to-one name="location" fetch=”select”/>

Alternatively, outer join fetching can be disabled globally by setting the
max_fetch_depth property to 0 in the hibernate.cfg.xml file:

<property name="max_fetch_depth">0</property>

You will typically leave outer join fetching enabled, as it can greatly

improve performance by reducing the number of trips to the database

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using HQL 169
to retrieve an object. The max_fetch_depth property is just one configu-
ration parameter that can impact queries. We’ll look at two more:
show_sql and query_substitutions.

6.1.4 Show SQL

While debugging HQL statements, you may find it useful to see the
generated SQL to make sure the query is doing what you expect. Set-
ting the show_sql property to true will result in the generated SQL
being output to the console, or whatever you have System.out set to.
Set the property in your hibernate.cfg.xml file:

<property name="show_sql">true</property>

You will want to turn off SQL output when deploying to production,
especially in an application server. Application servers typically set
System.out to a log file, and the SQL output can be overwhelming.

6.1.5 Query substitutions

Hibernate supports many different databases and SQL dialects, each
with different names for similar functions. Using query substitutions,
you can normalize function names and literal values, which simplifies
porting to different databases. Query substitutions can be a confusing,
so let’s look at a few examples.

First, to configure query substitutions in the configuration file, use the
following:

<property name="query.substitutions">
 convert CONV, true 1, false 0
</property>

This configuration setting performs three substitutions:

❂ The CONV function is now aliased to convert.
❂ Boolean true values are replaced with 1.

❂ Boolean false values are replaced with 0.

Licensed to Tricia Fu <tricia.fu@gmail.com>

170 CHAPTER 6 Querying persistent objects
Query substitutions occur when the HQL is compiled into SQL. The
substitutions for boolean values are useful if your database does not
support boolean data types. This allows you to use true and false in
your queries, which is clearer than using 1 and 0.

By substituting convert for the name of the CONV function, you can
make your HQL statements more portable. For example, MySQL
names the function CONV, while Oracle names the same function CON-
VERT. If you port your application to Oracle, you only need to update
the query substitution property instead of the HQL.

6.1.6 Query parser

Hibernate 3 introduces a new HQL abstract syntax tree (AST) query
parser, which replaces the classic parser found in earlier releases.
While the parser in use doesn’t make much difference to you, we men-
tion it because in some cases, particularly when migrating an applica-
tion from Hibernate 2 to 3, you may want to use the classic parser.
You’ll likely want to use the classic parser if the AST parser complains
about your existing HQL.

To switch from the AST parser (which is the default) to the classic
parser, set the following property in your hibernate.properties file:

hibernate.query.factory_class=
 ➥ org.hibernate.hql.classic.ClassicQueryTranslatorFactory

If you’re configuring Hibernate using the hibernate.cfg.xml property,
use this:

<property name="query.factory_class">
org.hibernate.hql.classic.ClassicQueryTranslatorFactory
</property>

Ideally, you’ll use the newer AST parser. When the SessionFactory is
created, the AST parser validates all of the named HQL queries found
Licensed to Tricia Fu <tricia.fu@gmail.com>

Querying objects with HQL 171
in your mapping files, which can save you a lot of time when you’re
testing your application.

We’ve covered the introductory information necessary to use HQL in
your applications. The remainder of the chapter will be spent discuss-
ing the features of the query language.

With a solid foundation in executing queries, you can concentrate on
exploring the query language itself. If you have experience with SQL,
you shouldn’t have a problem getting a firm grasp of HQL.

This section doesn’t have much Java code; instead, we provide a num-
ber of example queries and explanations. Although we’ve presented the
occasional HQL statement at various points earlier in the book, this
section examines features of HQL that we haven’t used.

6.2.1 The FROM clause

The FROM clause allows you to specify the objects that will be que-
ried. It also lets you create aliases for object names. Suppose you want
to query all Event instances matching a given name. Your resulting
query would be as follows:

from Event e where e.name='Opening Plenary'

This new query introduces a shorthand name, or alias, for the Event
instance: e. This shorthand name can be used just like its SQL counter-
part, except here you’re using it to identify objects instead of tables.
Unlike SQL, HQL does not allow the as keyword when defining the
alias. For instance:

from Event as e where e.name='Opening Plenary'

The as in the previous query will cause an org.hibernate.QueryExcep-
tion when you attempt to execute the query. Since as is implied, there
is no need to insert it in the query. You’re also querying a property of

6.2 Querying objects with HQL
the Event: the name. When querying properties, use the JavaBean

Licensed to Tricia Fu <tricia.fu@gmail.com>

172 CHAPTER 6 Querying persistent objects
property name instead of the column name in the table. You shouldn’t
be concerned with the underlying relational tables and columns when
using HQL, but instead focus on the properties of the domain objects.

You will typically have one object in the FROM clause of the query, as
in our examples to this point. Querying on one object type simplifies
the results, since you’re only going to get a List containing instances of
the queried object. What happens if you need to query multiple associ-
ated objects? You could have multiple objects in the FROM clause,
such as

from Event e, Attendee a where …

How do you know what object type the result list will contain? The
result list will contain a Cartesian product of the queried objects, which
probably isn’t what you want. To query on associated objects, you’ll
need to join them in the FROM clause.

6.2.2 Joins

You’re probably familiar with SQL joins, which return data from mul-
tiple tables with a single query. You can think of HQL joins in a similar
way, only you’re joining object properties and associations instead of
tables. If we want to return all Events that a specific Attendee is going
to be attending, join the attendee property to the Event in the query:

from Event e join e.attendees a where a.id=314

You can join all associations (many-to-one and one-to-one), as well as
collections, to the query’s base object. (We refer to the base object in a
query as the object listed in the FROM clause. In this case, the base
object is the Event.) As the previous query shows, you can also assign
an alias to joined associations and query on properties in the joined
object. The naming convention for HQL aliases is to use a lowercase
word, similar to the Java variable naming convention.

Types of joins

HQL has different types of joins, all but one of them taken from SQL.

We summarize the join types in table 6.1.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Querying objects with HQL 173
Unless you specify left, right, or full as the prefix to the join state-
ment, the default is to use inner joins. All of the joins in table 6.1
behave like their SQL counterparts, except for inner join fetch. Join-
ing a lazy collection with inner join fetch will cause the collection to
be returned as populated. For example:

from Event e inner join fetch e.speakers

returns all of the Event instances with populated collections of Speak-
ers. Let’s look at joining an object associated to the base object as a
many-to-one:

from Event e join e.location l where l.name = :name

Joining the Location instance to the Event allows querying on the
Location properties, and results in a more efficient SQL query. Let’s
say you had the following query:

Table 6.1 Join types

Join Type Rule

inner join Unmatched objects on either side of the join are dis-
carded.

left [outer] join All objects from the left side of the join are returned.
If the object on the left side of the join has no match-
ing object on the right side of the join, it is still
returned.

right [outer] join All objects from the right side of the join are
returned. If the object on the right side of the join
has no matching object on the left side of the join, it
is still returned.

full join All objects from either side of the join are returned,
regardless of matching objects on the opposite side
of the join.

inner join fetch Used to retrieve an associated object or a collection
of objects regardless of the outer-join or lazy prop-
erty on the association. This join does not have a SQL
counterpart.
Licensed to Tricia Fu <tricia.fu@gmail.com>

174 CHAPTER 6 Querying persistent objects
from Event e where e.location.name = :name and
 e.location.address.state = :state

Since you’re walking the object graph twice, once for the Location
name and again for the Location state, the query compiler will join the
Location instance to the Event twice. Joining the Location to the Event
in the FROM clause results in only one join and a more efficient query.

Joined objects can also be returned in the SELECT clause of the HQL
statement. The HQL SELECT clause is discussed next.

6.2.3 Selects

The SELECT clause allows you to specify a list of return values to be
returned from a query. If you recall from chapter 1, selecting specific
columns of data returned from a query is called projection. Possible
return values include entire objects, specific object properties, and
derived values from a query. Derived values include the results from
various functions, such as min(…), max(…), and count(…).

The SELECT clause does not force you to return entire objects. It’s
possible to return specific fields of objects, just as in SQL. Another
interesting feature of HQL is the ability to return new objects from the
selected values. We’ll examine both features next.

Projection

Suppose that instead of returning the entire Event object in your que-
ries, you only want to return the name of the Event. Retrieving the
entire object just to get the name is pretty inefficient. Instead, your
query will only retrieve the desired data:

select e.name from Event e

This query returns a list of String instances containing the Event
names. If you want to return the Event start date in addition to the
name, add another parameter to the SELECT clause:
select e.name, e.startDate from Event e

Licensed to Tricia Fu <tricia.fu@gmail.com>

Querying objects with HQL 175
Each element in the returned list is an Object[] containing the speci-
fied values. The length of the Object[] array is equal to the number of
columns retrieved. Listing 6.1 illustrates querying and processing mul-
tiple scalar values.

Listing 6.1 Multiple scalar values

Session session = factory.openSession();
String query = " select e.name, e.startDate from Event e ";
Query query = session.createQuery("query");
List results = query.list();
for (Iterator I = results.iterator(); i.hasNext();) {
 Object[] row = (Object[]) i.next();
 String name = (String) row[0];
 Date startDate = (Date) row[1];
 // …
}

Looking at listing 6.1, you’ll notice the values in the Object[] array are
in the same order given in the query. Also, since the array contains
Object instances, no primitive values can be returned from a scalar
query. This limitation is also present when querying a single scalar
value, since a List cannot contain primitive values.1

A common use of scalar value queries is to populate summary objects
containing a subset of the data in the persistent object. In our case, a
summary object would consist of the Event name and start date. When
iterating over the result list, you would need to create a separate list of
summary objects. Fortunately, there’s a better way to do this.

Returning new objects

The SELECT clause can be used to create new objects, populated from
values in the query. Let’s look at an example:

select new EventSummary(e.name, e.startDate) from Event e

1 The contract for the java.util.List interface specifies that it can only store and return
instances of java.lang.Object. Since primitive types (int, long, boolean, etc.) do not
inherit from java.lang.Object, they cannot be stored in a java.util.List. For more infor-

mation, refer to http://java.sun.com/docs/books/tutorial/collections/.

Licensed to Tricia Fu <tricia.fu@gmail.com>

176 CHAPTER 6 Querying persistent objects
The result list will be populated with instances of the EventSummary
class. Looking at the constructor used in the HQL statement, the
EventSummary class must have a constructor matching the constructor
used in the HQL statement: EventSummary(String, Date).

We have covered the major components of HQL queries. The follow-
ing section presents the aggregate functions that are available in HQL
and how they can be used in SELECT and WHERE clauses.

6.2.4 Using functions

Functions are special commands that return a computed value. In SQL,
there are two types of functions: aggregate and scalar. Scalar functions
typically operate on a single value and return a single value. There are
also scalar functions that don’t require arguments, such as now() or
CURRENT_TIMESTAMP, which both return a timestamp. Aggregate func-
tions operate on a collection of values and return a summary value.

Hibernate supports five of the most commonly used SQL aggregate
functions: count, avg, min, max, and sum. The functions perform the
same operations as their SQL counterparts, and each operates on an
expression. The expression contains the values that the function oper-
ates on. Table 6.2 summarizes the five aggregate functions.

The count(…) function can also take advantage of the distinct and all
keywords to filter the computed value. Let’s look at some examples of
using functions in HQL queries.

Table 6.2 Hibernate aggregate functions

Function Usage

avg(expression) Calculates the average value of the expression.

count(expression) Counts the number of rows returned by the expression.

max(expression) Returns the maximum value in the expression.

min(expression) Returns the minimum value in the expression.

sum(expression) Returns the sum of column values in the expression.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Querying objects with HQL 177
select count(e) from Event e

This example returns the number of Events persisted in the database.
To count the number of distinct Events, use the distinct keyword:

select count(distinct e) from Event e

All of the aggregate functions return an Integer. The easiest way to
retrieve the result is to get the first element in the result list:

Integer count =
 (Integer) session.find("select count(distinct e) from "+
 "Event e").get(0);

You may also use functions in scalar value queries:

select e.name, count(e) from Event e

Suppose you want to get the collection of Attendees for a given Event.
With what you know so far, you would have to retrieve the Event and
then get the collection of Attendees. The code for this is as follows:

String query = "from Event e inner join fetch e.attendees "+
 "where e.name = :name";
Query q = session.createQuery(query);
q.setParameter("name", "Opening Plenary");
Event event = (Event) q.list().get(0);
Set attendees = event.getAttendees();
session.close();

While this takes six lines of code, there is a much shorter way to obtain
a child collection. Hibernate provides the elements(…) function to
return the elements of a collection:

select elements(e.attendees) from Event e where name = :name

This query returns a List of Attendee instances for a given Event. If
you join the collection in the FROM clause, you can just use the join
alias. For example, the next query is the same as our previous query:
Licensed to Tricia Fu <tricia.fu@gmail.com>

178 CHAPTER 6 Querying persistent objects
select elements(a) from Event e
join e.attendees a
where name = :name

Functions can also be used in the WHERE clause, which we cover
later in this chapter. HQL properties, or attributes available for objects
in a query, are presented next.

6.2.5 HQL properties

HQL supports two object properties: id and class. The id property
gives you access to the primary key value of a persistent object.
Regardless of what you name the id property in the object and map-
ping definition, using id in HQL queries will still return the primary
key value. For instance, if you have a class with an id property named
objectId, you would still use the id property in HQL:

from MyObject m where m.id > 50

This query selects all instances of MyObject where the objectId prop-
erty value is greater than 50. You can still use the objectId property if
you prefer. Think of HQL’s id property as shorthand for the primary
key value. The class property provides a similar function.

The class property provides access to the full Java class name of per-
sistent objects in an HQL query. This is typically useful when you have
mapped a persistent class hierarchy and only want to return classes of a
certain type. We’ll look at an example to see how the class property
can be used.

Let’s say the Attendee class has an association to the Payment class. The
Payment class specifies how the Attendee will pay for the Events. Pay-
ment has two subclasses: CreditCardPayment and CashPayment. You
want to retrieve all Attendees who have paid with cash:

from Attendee a join a.payment p where p.class =
 com.manning.hq.ch06.CashPayment
Licensed to Tricia Fu <tricia.fu@gmail.com>

Querying objects with HQL 179
As with the id property, you can also return the class property in the
SELECT statement:

select p.id, p.class from Payment p;

This query returns all of the ids and classes for Payment as a List of
Object[]s. However, the class property is not returned as an instance
of java.lang.Class. Instead, the class property is a java.lang.String,
which has the same value as the discriminator specified in the mapping
definition.

The class property is only available on object hierarchies—in other
words, objects mapped with a discriminator value. If you try to query
the class property of an object without a discriminator value, you’ll
receive a QueryException stating that the query parser couldn’t resolve
the class property.

The id and class properties can be used in SELECT and WHERE
clauses. Expressions that can occur in the WHERE clause are covered
in the next section.

6.2.6 Using expressions

Expressions are used to query object properties for desired criteria.
Occurring in the WHERE clause of an HQL query, expressions sup-
port most of the common SQL operators that you’re probably accus-
tomed to using. We won’t explain each available expression but instead
give a number of examples demonstrating expressions in HQL.

A number of available expressions are designed to query child collec-
tions or attributes of objects contained within a collection. The sim-
plest function is size(…), which returns the number of elements in a
collection:

from Event e where size(e.attendees) > 0

The size of a collection can also be accessed as a property, like id and
class:
from Event e where e.attendees.size > 0

Licensed to Tricia Fu <tricia.fu@gmail.com>

180 CHAPTER 6 Querying persistent objects
Which form you choose is entirely up to you; the result is the same. If
you are using an indexed collection (array, list, or map), you can take
advantage of the functions shown in table 6.3.

All of the functions in table 6.3 can only be used with databases that
support subselects. Additionally, the functions can only be used in the
WHERE clause of an HQL statement. We looked at the elements(…)
function earlier, but its usage changes slightly when used in a WHERE
clause. Like the size property, the maximum and minimum functions
can also be used as properties. Let’s look at a few examples. First:

from Speaker s where maxIndex(s.eventSessions) > 10

or in its property form:

from Speaker s where s.eventSessions.maxIndex > 10

The maxElement and minElement functions only work with basic data
types, such as numbers (ints, longs, etc.), Strings, and Dates. These
functions do not work with persistent objects, like Speakers or Attend-
ees. For example, to select all Events with more than 10 available rooms:

from Event e where maxElement(e.availableRooms) > 10

Indexed collections can also be accessed by their index. For example:

Table 6.3 Functions for indexed collections

Function Description

elements(expression) Returns the elements of a collection.

indices(expression) Returns the set of indices in a collection. May
be used in a SELECT clause.

maxElement(expression) Returns the maximum element in a collection
containing basic types.

minElement(expression) Returns the minimum element in a collection
containing basic types.

maxIndex(expression) Returns the maximum index in a collection.

minIndex(expression) Returns the minimum index in a collection.
from Speaker s where s.eventSessions[3].name = :name

Licensed to Tricia Fu <tricia.fu@gmail.com>

Querying objects with HQL 181
The above HQL queries the fourth EventSession object in the collec-
tion and returns the associated Speaker instance. (Remember that col-
lection indexes start at 0, not 1.) Let’s look at another, more
complicated example:

from Speaker s where
 s.eventSessions[size(s.eventSessions) – 1].name = :name

You can get creative within the brackets—for instance, passing in an
expression to compare properties of the last collection element. Here’s
another example of querying on indexed collections using an expres-
sion within brackets.

select e from EventSession e, Speaker s where
 s.eventSessions[maxIndex(e.eventSessions)] != e

You’ll notice that at the end of the previous query, you just referenced
the EventSession as e instead of using the id property of the EventSes-
sion. This demonstrates that you can use a persistent entity in a query.
Let’s look at a simple example:

Session sess = factory.openSession();
Query q = sess.createQuery("from EventSession e where e=?");
q.setEntity(1, myOtherEventSession);
List l = q.list();
sess.close();

When you call Query.setEntity(…), the generated SQL doesn’t match
on all fields of the entity object—only on the id value. The generated
SQL for our query looks like

select e_.id, e_.name from event_sessions as e_ where (e_id=?)

Only the id of the passed entity is used, so it’s perfectly acceptable to
use entity instances in your query objects without worrying about
overhead.
Licensed to Tricia Fu <tricia.fu@gmail.com>

182 CHAPTER 6 Querying persistent objects
HQL also supports various operators, including logical and compari-
son operators. Logical operators include and, any, between, exists, in,
like, not, or, and some. The comparison operators include =, >, <, >=,
<=, and <>.

Grouping and ordering

The GROUP BY clause is used when returning multiple scalar values
from a SELECT clause, with at least one of them the result of an
aggregate function. For instance, you need a GROUP BY clause for
the following HQL statement:

select e.name, count(elements(a)) from Event e
 join e.attendees a group by e.name

The GROUP BY clause is necessary so that the count function groups
the correct Events together. Like most other things in relational the-
ory, queries returning both scalar values and values from aggregate
functions have a name: vector aggregates. The query shown here is a
vector aggregate.

On the other hand, queries returning a single value are referred to as
scalar aggregates. Scalar aggregate queries do not require a GROUP
BY clause, but vector aggregate queries do. Let’s look at a scalar
aggregate query:

select count(a) from Event e join e.attendees a

Since there is nothing to group by in the SELECT clause, no GROUP
BY clause is required.

The GROUP BY clause can be used with the HAVING clause to place
search criteria on the results of GROUP BY. Using the HAVING
clause does not impact the aggregates; instead, it impacts the objects
returned by the query. You can use the HAVING clause as you would
a WHERE clause since the same expressions are available:

select e.name, count(a) from Event e
 join e.attendees a group by e.name
 having length(e.name) > 10
Licensed to Tricia Fu <tricia.fu@gmail.com>

Criteria queries 183
This query returns the Event name and number of Attendees if the
Event name has more than 10 characters. You can also be more cre-
ative in the HAVING clause:

select e.name, count(a) from Event e
 join e.attendees a group by e.name
 having size(a) > 10

This time you’re getting the Event name and Attendee count for all
Events with more than 10 Attendees. Of course, now that you have
your Event names, you’ll probably want to order them.

We’ve seen the ORDER BY clause in a few queries before this point,
and its usage is very straightforward. The ORDER BY clause allows
you to sort the result objects in a desired order. You may sort the
objects in ascending or descending order, with ascending as the
default. Build on the example by adding an ORDER BY clause:

select e.name, count(a) from Event e
 join e.attendees a, join e.location l group by e.name
 having size(a) > 10 order by e.name, l.name

This query returns the same objects with the same criteria, only now the
returned objects are sorted according to the Event and Location names.

HQL provides a powerful mechanism to query persistent objects. The
problem with HQL is that it is static and cannot easily be changed at
runtime. Creating queries dynamically with string concatenation is a
possibility, but that solution is tedious and cumbersome. Hibernate
provides a simple API that can be used to create queries at runtime.

The Criteria API provides an alternative method to query persistent
objects. It allows you to build queries dynamically, using a simple API.
Criteria queries are generally used when the number of search parame-

6.3 Criteria queries
ters can vary.

Licensed to Tricia Fu <tricia.fu@gmail.com>

184 CHAPTER 6 Querying persistent objects
Despite their relative usefulness, Criteria queries are somewhat lim-
ited. Navigating associations is cumbersome, requiring you to create
another Criteria, rather than using the dot notation found in HQL.
Additionally, the Criteria API does not support the equivalent of
count(…), or other aggregate functions. Finally, you can only retrieve
complete objects from Criteria queries.

However, the Criteria API can be excellent for certain use cases—for
instance, in an advanced search screen where the user can select the
field to search on as well as the search value. Let’s look at a few exam-
ples of using Criteria queries:

Criteria criteria = session.createCriteria(Event.class);
criteria.add(Restrictions.between("duration",
 new Integer(60), new Integer(90));
criteria.add(Restrictions.like("name", "Presen%"));
criteria.addOrder(Order.asc("name"));
List results = criteria.list();

The Criteria query is essentially the same as the following HQL:

from Event e where (e.duration between 60 and 90) and
 (e.name like 'Presen%') order by e.name

The methods in the Criteria class always return the current Criteria
instance, allowing you to create queries in a more concise manner:

List results = session.createCriteria(Event.class).
 .add(Restrictions.between("duration", new Integer(60),
 new Integer(90))
 .add(Restrictions.like("name", "Presen%"))
 .addOrder(Order.asc("name"))
 .list();

The result is the same, but the code is arguably cleaner and more

concise.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Stored procedures 185
The Criteria API isn’t as fully featured as HQL, but the ability to gen-
erate a query programmatically using a simple API can lend a great
deal of power to your applications.

A shortcoming in earlier releases of Hibernate was the lack of support
for stored procedures. Thankfully, Hibernate 3 addresses this problem.
Stored procedures are defined in the mapping document and declare
the name of the stored procedure as well as the return parameters.
Let’s look at an example.

Suppose we have the following Oracle stored procedure:

CREATE FUNCTION selectEvents RETURN SYS_REFCURSOR
AS
 sp_cursor SYS_REFCURSOR;
BEGIN
 OPEN st_cursor FOR
 SELECT id, event_name, start_date, duration
 FROM events;
 RETURN sp_cursor;
 END;

You can see that the stored procedure retrieves four columns from the
events table, which is used to populate an Event instance. Before you
can use it, however, you have to declare the stored procedure in the
mapping file for the Event class:

<sql-query name="selectEvents_SP" callable="true">
 <return alias="ev" class="Event">
 <return-property name="id" column="id"/>
 <return-property name="name" column="event_name"/>
 <return-property name="startDate" column="start_date"/>
 <return-property name="duration" column="duration"/>
 </return>
 { ? = call selectEvents() }
</sql-query>

6.4 Stored procedures
Licensed to Tricia Fu <tricia.fu@gmail.com>

186 CHAPTER 6 Querying persistent objects
Executing the stored procedure is the same as using a named HQL
query:

Query query = session.getNamedQuery("selectEvents_SP");
List results = query.list();

If your stored procedures take parameters, you can set them using the
Query.setParameter(int, Object) method. Your stored procedures
must return a result set to be usable by Hibernate. If you have legacy
procedures that don’t meet this requirement, you can execute them
using the JDBC Connection, accessed by session.connection().

Stored procedures are an interesting addition to Hibernate and are
useful in organizations that prefer to perform the majority of their data-
base queries as procedures.

One of the problems with HQL is testing the query to make sure it
works. This is typically a problem when you’re new to HQL or trying
out new features. Hibern8IDE provides a simple interface to your
mapping definitions and an HQL console for executing queries inter-
actively. (Of course, you’ll also want to add unit tests to your code base
for repeatability.)

Hibern8IDE loads the Hibernate configuration file (either hiber-
nate.cfg.xml or hibernate.properties) and the mapping definitions for
your persistent objects. Once you have loaded the configuration file
and mapping definitions, you can enter HQL queries in the HQL
Commander tab. Hibern8IDE also supports executing named queries
defined in the mapping documents. After you execute a query, the
results are presented in a table that you can browse to ensure the cor-
rect objects and properties are returned.

Hibern8IDE is designed to be used from the command line, but you

6.5 Hibern8IDE
can also start it from an Ant build file:

Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 187
<target name="hibern8" description="Starts Hibern8IDE.">
 <java classname="net.sf.hibern8ide.Hibern8IDE”
 classpathref="project.class.path" fork="true"/>
</target>

Hibern8IDE is a useful tool for exploring the query language, espe-
cially when you’re first starting out with HQL. It is relatively easy to
use and provides all of the necessary features for querying your objects.

Hibern8IDE only works with Hibernate 2. The project has been
rebranded as HibernateConsole for Hibernate 3. HibernateConsole is
a plug-in for the Eclipse IDE.

The Hibernate Query Language abstracts queries from the underlying
database. While the language is similar to SQL, HQL is object ori-
ented and has features to support querying object graphs.

There are two common methods used to execute an HQL statement.
The Session interface provides an overloaded find method that can
execute queries and return the results. The Query interface also offers
the ability to execute queries, but it provides more fine-grained control
of the query, such as limiting the number of returned objects.

Both the Query and Session interfaces allow results to be returned as a
List or as an Iterator. The key difference between the two is that the
Iterator actually retrieves objects when the next() method is called.
When a List is returned, all of the contained objects are populated
when the query is executed.

Like JDBC PreparedStatements, HQL queries can take positional
parameters, denoted with a question mark. However, HQL also sup-
ports the concept of named parameters.

The Criteria class is used to create queries programmatically. It’s

6.6 Summary
handy when you don’t know what the exact query will be, as in an

Licensed to Tricia Fu <tricia.fu@gmail.com>

188 CHAPTER 6 Querying persistent objects
advanced search function where the user can query on various fields.
Criterias have some limitations, such as limited object graph naviga-
tion and an inability to retrieve specific fields from objects.

When you’re first starting out with HQL or a query has you stumped,
Hibern8IDE is a great tool. While it doesn’t replace a unit test suite, it
can save you time when crafting and optimizing queries, or if you just
want to explore the syntax or new functionality.
Licensed to Tricia Fu <tricia.fu@gmail.com>

7
Organizing with Spring
and data access objects

This chapter covers

• Creating an abstraction layer using the DAO pattern

• Using the Layer Supertype pattern to simplify
resource cleanup code

• Organizing your project with Spring

nderstanding the basics of Hibernate will take you a long way toward
using it productively on your projects. But beyond the foundations of the
Hibernate library, like the SessionFactory, the Session, the mapping files,

and Hibernate Query Language (HQL), it isn’t always clear how to organize an
application at a higher level. You can apply a number of patterns and best
practices to your project. Some of these best practices come from the
experiences of the community; others are adaptations of Java enterprise
patterns as applied to persistence. This chapter is all about strategies for
bringing order to your applications.

Programming is bit like building a tower from children’s alphabet blocks.
If you are building a small tower, you don’t need to be all that careful
about how you stack them. But to build a really big tower, perhaps one
that goes all the way up to the ceiling fan, you need a slightly different set

U

189

Licensed to Tricia Fu <tricia.fu@gmail.com>

190 CHAPTER 7 Organizing with Spring and data access objects
of techniques. A bit more planning, a more organized stacking tech-
nique, and possibly some super adhesive glue all might be useful.

Using better tools and techniques applies to both creating toy towers
and writing software. So this chapter is about building the big towers.
We will discuss a few common patterns: the Data Access Object
(DAO) and the Layer Supertype patterns. Another popular open
source project, Spring, also provides an organizational tool for simpli-
fying your code. To wrap things up, this chapter will give a brief over-
view of this tool and how it can simplify your Hibernate projects.

Chapter goals

In this chapter, you’ll accomplish the following:

❂ Create an abstraction layer, using the DAO pattern to keep queries
together and thus simplifying client object usage.

❂ Improve the DAO objects with the Layer Supertype pattern, reduc-
ing the resource cleanup code.

❂ Use Spring to further organize and simplify your DAO code.

Assumptions

This chapter assumes that

❂ You are familiar with the concept of patterns.
❂ You understand how sessions and transactions work, specifically

how persistent objects are linked to an open session.
❂ You are looking for techniques to organize a larger application. This

means more investment up front for better-structured code as the
project increases in size.

Odds are fair to even that most Java/J2EE developers will have some
passing familiarity with the Data Access Object (DAO) pattern. It is
one of the core patterns that Sun highlights in its Java Blueprints, and
is mentioned often in many Java books. It’s first and foremost a pattern

7.1 The ubiquitous DAO pattern
for any application that uses a persistent data store. Most commonly

Licensed to Tricia Fu <tricia.fu@gmail.com>

The ubiquitous DAO pattern 191
used in applications that use SQL, it applies equally well to applica-
tions that use Hibernate.

7.1.1 Keeping the HQL together

The purpose of the DAO pattern is to answer one simple question:
where to put your data access code? If you haven’t experienced the
pain of working with a legacy application where SQL code is shotgun-
scattered everywhere, let me tell you it’s not fun. Need to rename a col-
umn in that table? Be prepared to hunt through the entire application
to be sure you haven’t broken an SQL statement.

The DAO pattern encourages developers to keep all SQL together.
And what’s good for SQL is good for HQL. An application that keeps
all HQL in a single place is far easier to maintain and modify. New
developers don’t have to decide where to put new HQL as well; they
just put it into the DAO. Figure 7.1 shows how Event and EventDao
interact with the database.

As you have seen throughout the previous chapters, the power of que-
rying for objects comes with the responsibility of managing exception
handling, transactions, and resource cleanup. It’s far better to keep
those details hidden from the rest the application. Such an approach
decouples the rest of application from Hibernate, making it easier to
change object/relational mapping (ORM) implementations (i.e., to
JDO).1 More important, this strategy simplifies how client objects

1 But Hibernate is so cool, why would you want do that? In all seriousness, switching ORM
implementations isn’t trivial, and DAOs are leaky enough abstractions that doing so proba-
bly won’t completely hide Hibernate from the application. So don’t invest too much energy
in an airtight DAO layer, solely for the purpose of “maybe” switching ORM implementa-

Event

-id : long

-name : string
+create()
+find()
+update()
+delete()

EventDao

Database

Figure 7.1 A diagram of Event and EventDao as they interact with the database
tions later.

Licensed to Tricia Fu <tricia.fu@gmail.com>

192 CHAPTER 7 Organizing with Spring and data access objects
interact with the persistence layer; they don’t need to know about ses-
sions, transaction boundaries, or cleaning up after themselves.

DAOs have style too

You can use one of two basic styles of DAO:

❂ DAO per application: A central DAO creates, updates, finds, and
deletes all entity objects in the application.

❂ DAO per class: Each entity class has its own DAO, which creates,
finds, updates, and deletes instances of that object only. An Event
object has a corresponding EventDao class.

You could apply other minor variations, such as using one DAO per
module, but ultimately which approach you choose depends mostly on
how many persistent objects you have. With a large number of classes,
we favor the DAO-per-class strategy. The DAO-per-application strat-
egy can turn into a bit of a “bloatware” class. Second, there is also a
nice naming symmetry to the DAO-per-class approach that is easy to
remember; if you need to find Event objects, you can easily remember
that its DAO is EventDao. Finally, it follows the open-closed principle,
which states that classes should be open for extension but closed for
modifications. You can add new persistent classes without having to
modify the central uber-DAO. So with that in mind, let’s use the
DAO-per-class style for our examples.

A simple DAO

Listing 7.1 shows a simple DAO that handles the basic CRUD (create,
read, update, and delete) operation that almost all entities need. In
addition to these functions, it has a few responsibilities so its client
objects don’t have to worry about them:

❂ Includes one session per operation; each find, update, and delete
method is handled in a single session.

❂ Provides a single transaction per operation. Client objects don’t
need to worry about starting or committing a transaction.

❂ In Hibernate 2.x, handles catching and handling the checked excep-
tions that Hibernate throws, turning them into unchecked excep-

tions, which won’t clutter up client code. If you use Hibernate 3.x,

Licensed to Tricia Fu <tricia.fu@gmail.com>

The ubiquitous DAO pattern 193
you can just let the unchecked HibernateExceptions go without
rethrowing.

❂ Features strongly typed and explicit DAOs; the EventDao only
works with Events, meaning client code doesn’t have to perform
manual casting.

Listing 7.1 A simple EventDao, with create, read, update,
and delete methods

package com.manning.hq.ch07;

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.Transaction;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.manning.hq.ch07.Event;
import com.manning.hq.ch07.HibernateFactory;

import java.util.List;

/**
 * The Data Access Object for managing the persistent Events.
 */
public class SimpleEventDao {
 Log log = LogFactory.getLog(SimpleEventDao.class);
 private Session session;
 private Transaction tx;

 public SimpleEventDao() {
 HibernateFactory.buildIfNeeded();
 }

 public void create(Event event)
 throws DataAccessLayerException {
 try {
 startOperation();
 session.save(event);
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {

Initializes the
SessionFactory, if it
hasn’t been yet

Opens a Session and
starts the transaction

Saves the
event

Rolls back and throws an
unchecked exception
 HibernateFactory.close(session);

Licensed to Tricia Fu <tricia.fu@gmail.com>

194 CHAPTER 7 Organizing with Spring and data access objects
 }
 }

 public void delete(Event event)
 throws DataAccessLayerException {
 try {
 startOperation();
 session.delete(event);
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(session);
 }
 }

 public Event find(Long id) throws DataAccessLayerException {
 Event event = null;
 try {
 startOperation();
 event = (Event) session.load(Event.class, id);
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(session);
 }
 return event;
 }

 public void update(Event event)
 throws DataAccessLayerException {
 try {
 startOperation();
 session.update(event);
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(session);
 }
 }
 private void handleException(HibernateException e)

Licensed to Tricia Fu <tricia.fu@gmail.com>

The ubiquitous DAO pattern 195
 throws DataAccessLayerException {
 HibernateFactory.rollback(tx);
 throw new DataAccessLayerException(e);
 // Alternatively, you could just rethrow, like so…
 // throw e;
 }

 private void startOperation() throws HibernateException {
 session = HibernateFactory.openSession();
 tx = session.beginTransaction();
 }

}
package com.manning.hq.ch07;
public class DataAccessLayerException extends RuntimeException {
 // Other Constructors omitted
 public DataAccessLayerException(Throwable cause) {
 super(cause);
 }
}

The SimpleEventDao is an extremely simple implementation of a DAO,
with the four main methods that create, read, update, and delete
instances of Events. Each method handles its operation within a single
transaction, and opens and closes a single session. It is explicit, mean-
ing that it works exclusively with Events, so clients’ classes don’t need
to handle casting. While this implementation is simple (perhaps overly
so, as we will explore here later), it greatly shortens the client code that
works with events. So creating and finding an event can look as simple
as this:

Event event = new Event();
event.setName("A new Event");

EventDao eventDao = new EventDao();
eventDao.create(event);

Event foundEvent = eventDao.find(event.getId());

As you can see, no messy exception handling is needed, nor is there a

need to handle resource cleanup. Now let’s talk a little more about

Licensed to Tricia Fu <tricia.fu@gmail.com>

196 CHAPTER 7 Organizing with Spring and data access objects
some of the problems this implementation has, and what we can do to
improve it.

The simple DAO implementation we examined in the previous section
has a few problems, some of which you may already have already
picked up on. Let’s take a look.

7.2.1 Boilerplate code

Listing 7.1 includes lots of resource management and exception-han-
dling code. Each method has to open a session, start a transaction, do
its business operation, commit a transaction, handle rollbacks, and
finally close the session. Each of the methods looks basically like this:

try {
 startOperation();
 session.save(event);
 tx.commit();
} catch (HibernateException e) {
 handleException(e);
} finally {
 HibernateFactory.close(session);
}

The line session.save(event); is essentially the only one that changes
between methods. Even refactoring out a few convenience methods,
such as startOperation() and handleException(), doesn’t completely
rid you of boilerplate code. One potential solution is the Layer Super-
type pattern, discussed in section 7.3.

7.2.2 Potential duplication

Adding new DAOs could easily become a rat’s nest of copy-and-paste
reuse. If we need another DAO, say LocationDao, we would have to

7.2 Analyzing the DAO
copy and paste EventDao and change a relatively few lines of code in

Licensed to Tricia Fu <tricia.fu@gmail.com>

Analyzing the DAO 197
each method. Since we know duplication is the root of all programming
evil, clearly something must be done. This too can be helped by the
Layer Supertype pattern.

7.2.3 Detached objects only

Since each method is working with a single session and transaction, all
of the Events the DAO works with are strictly detached objects. This
behavior might be fine, but it doesn’t take advantage of Hibernate’s
automatic dirty object checking or the session-level object cache. For
example, suppose a client writes the following:

Event foundEvent = eventDao.find(event.getId());
foundEvent.setDuration(30);
eventDao.update(foundEvent);

Here the find() occurs in one session and the update() occurs in
another. This will certainly work, but it would be really nice if the find
and update methods could somehow share a single session. Also, it
would be preferable to avoid cluttering up the method signatures pass-
ing around a session. While this works, it’s ugly, so we don’t want to
see something like this:

Session session = HibernateFactory.openSession();
Event foundEvent = eventDao.find(event.getId(), session);

foundEvent.setDuration(30);
eventDao.update(foundEvent, session);

Adding Session parameters to the methods forces the responsibility,
management, and sharing of sessions onto the client code, which
increases coupling, complexity, and potential for errors.

One of the potential solutions to this problem is a pattern known as the
Thread Local Session. This pattern is covered in chapter 8 so we aren’t
going to directly cover it here. Instead, in a moment, we examine
another framework, Spring, which uses the Thread Local Session pat-

tern under the covers.

Licensed to Tricia Fu <tricia.fu@gmail.com>

198 CHAPTER 7 Organizing with Spring and data access objects
Conventional J2EE wisdom says that an application should be divided
into layers. Which layers your application is supposed to have does, of
course, depend on which book you are reading. Some popular choices
for layers are as follows:

❂ The Presentation layer, where all user interaction and presentation
code goes

❂ The Domain layer, where all the “business” logic goes
❂ The Persistence layer, where our data storage access code goes

Regardless of which layers your application has, it’s very common that
each object in that layer have some common code that could be consol-
idated into a single class. This notion gives rise to the Layer Supertype
pattern, where each layer has “a type that acts as the supertype for all
types in its layer.”2 You can use the Layer Supertype pattern to sim-
plify your DAO.

The sample hierarchy in figure 7.2 shows the layer supertype
AbstractDao, which provides the protected methods that the subclasses
override and make public.

7.3 The Layer Supertype pattern

2 From Patterns of Enterprise Application Architecture, by Martin Fowler (Addison-Wesley Pro-

+saveOrUpdate()

+find()

+delete()

EventDao

#saveOrUpdate()

#find()

#delete()

AbstractDao

+saveOrUpdate()

+find()

+delete()

LocationDao

Figure 7.2
A diagram of the layer

supertype AbstractDao
fessional, 2003).

Licensed to Tricia Fu <tricia.fu@gmail.com>

The Layer Supertype pattern 199
The next step is to actually create the AbstractDao, which you’ll do in
the next section.

7.3.1 Creating an AbstractDao

The first step to creating your supertype is writing an AbstractDao,
which all the DAOs will ultimately extend. Listing 7.2 shows how that
class might look.

Listing 7.2 A layer supertype implementation, AbstractDao, which
has the common operations all DAOs need

package com.manning.hq.ch07;
import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.Transaction;
import java.util.List;

/**
 * A layer supertype that handles the common operations for all
 * Data Access Objects.
 */
public abstract class AbstractDao {
 private Session session;
 private Transaction tx;

 public AbstractDao() {
 HibernateFactory.buildIfNeeded();
 }

 protected void saveOrUpdate(Object obj) {
 try {
 startOperation();
 session.saveOrUpdate(obj);
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(session);
 }
 }

Works with
generic rather
than specific
domain objects
Licensed to Tricia Fu <tricia.fu@gmail.com>

200 CHAPTER 7 Organizing with Spring and data access objects
 protected void delete(Object obj) {
 try {
 startOperation();
 session.delete(obj);
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(session);
 }
 }

 protected Object find(Class clazz, Long id) {
 Object obj = null;
 try {
 startOperation();
 obj = session.load(clazz, id);
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(session);
 }
 return obj;
 }

 protected List findAll(Class clazz) {
 List objects = null;
 try {
 startOperation();
 Query query = session.createQuery(
 "from " + clazz.getName());
 objects = query.list();
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(session);
 }
 return objects;
 }

Finds a single persistent
object based on class and id
 protected void handleException(HibernateException e)

Licensed to Tricia Fu <tricia.fu@gmail.com>

The Layer Supertype pattern 201
 throws DataAccessLayerException {
 HibernateFactory.rollback(tx);
 throw new DataAccessLayerException(e);
 }

 protected void startOperation()
 throws HibernateException {
 session = HibernateFactory.openSession();
 tx = session.beginTransaction();
 }
}

In this listing, you see the common CRUD methods, including save,
find, and delete methods that have been pulled up into the AbstractDao
class. They have been made generic and protected so that only sub-
classes can call them. This greatly simplifies what your EventDao would
look like. Here’s a sample of some of the simplified methods:

public class ImprovedEventDao extends AbstractDao {
 // Other methods omitted
 public void create(Event event)
 throws DataAccessLayerException {
 saveOrUpdate(event);
 }

 public Event find(Long id) throws DataAccessLayerException {
 return (Event) find(Event.class, id);
 }
}

The only responsibilities that the ImprovedEventDao has to perform are
casts and delegate calls to the superclass. The dual problems of boiler-
plate code and potential duplication have been fixed. As we add new
entity objects, such as Locations or Speakers, it’s very quick to add a
new DAO, using AbstractDao as the layer supertype:

public class ImprovedLocationDao extends AbstractDao {

 // Other methods omitted
 public void create(Location location)

Licensed to Tricia Fu <tricia.fu@gmail.com>

202 CHAPTER 7 Organizing with Spring and data access objects
 throws DataAccessLayerException {
 saveOrUpdate(location);
 }

 public Location find(Long id)
 throws DataAccessLayerException {
 return (Location) find(Location.class, id);
 }
}

So with the introduction of the layer supertype, the remaining issue to
solve is that the DAO is only working with detached objects. We want
to be able to share sessions between our methods, even across differ-
ent DAOs. To do that, we will next explore the popular new frame-
work, Spring.

Some of the flaws we have identified in our DAO implementation have
been taken care of. Duplicate resource management code and the use
of one session per operation make the solution we laid out a bit more
complex than it needs to be and not as flexible as we would like. We
could certainly write a better and more robust solution. Fortunately,
we don’t need to bother—an excellent open source solution, the Spring
Framework, has provided it for us.

The Spring Framework solves several more problems than just helping
us out with Hibernate. It is, in fact, “a lightweight container which
allows developers to wire up business objects, DAOs, and resources
like JDBC DataSources and Hibernate SessionFactories.”3 It uses a
central XML configuration file to manage the resources and even has
its own web Model-View-Controller (MVC) framework. Spring is a
general framework, which means it can be useful in quite a few different

7.4 The Spring Framework

3 From an online article, “Data Access with Spring Framework,” by Juergen Hoeller, July

2003; http://hibernate.bluemars.net/110.html.

Licensed to Tricia Fu <tricia.fu@gmail.com>

The Spring Framework 203
situations. If you aren’t familiar with Spring, you might be wondering
how you can use it, and you might be concerned that it’s just a frame-
work you are “supposed” to use to maintain proper buzzword compli-
ance. As we will demonstrate here, it delivers on its mandate.

Spring has been deliberately divided into tightly focused multiple mod-
ules, including the MVC web framework we mentioned earlier, JDBC
support, aspect-oriented programming (AOP), and the ORM module.
This allows you to use the one you need without having to learn or
worry about the rest. For our purpose here, we will just focus on how it
can simplify your Hibernate code, which is the ORM module. And the
best place to start is with templates.

First, you will need to get a copy the Spring Framework, which you can
find at www.springframework.org. Unzip it alongside Hibernate under
the applications directory. Spring has a number of packaged options,
but for simplicity’s sake, the only JAR you need to worry about for
now is the applications\spring-framework-1.2-rc2\dist\spring.jar file.
Add it to the classpath by adding the following to your build.xml file:

<property name="spring.version" value="1.2-rc2"/>
<property name="spring.lib.dir"
 value="${applications.dir}/spring-framework-${spring.version}"/>
<path id="spring.lib.path">
 <fileset dir="${spring.lib.dir}\dist">
 <include name="**/spring.jar"/>
 </fileset>
</path>
<path id="runtime.classpath">
 // Other paths omitted.
 <path refid="spring.lib.path"/>
</path>

This code configures Spring so that it can be used in our example
project. Since Hibernate 3 is a recent release (at the time of printing),
other supporting projects such as Spring are catching up. Here we use

the newest release of it. In addition, since Spring has to support

Licensed to Tricia Fu <tricia.fu@gmail.com>

204 CHAPTER 7 Organizing with Spring and data access objects
both Hibernate 2 and 3, a new package, org.springframework.orm.
hibernate3, has been added to support Hibernate 3 projects. Next, let’s
see how Spring can be used to simplify our example project.

7.4.1 What’s in a template?

The basic way Spring helps out is by providing templates for Hiber-
nate operations. So what’s a template and why do we need it? The
answer comes from looking back at the original create() method from
our SimpleEventDao:

protected void create(Event event) {
 try {
 startOperation();
 session.save (event);
 tx.commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(session);
 }
}

If you notice, only one method call really matters here: the actual
save() call. Every other line is what we like to call excise. Excise is the
extra stuff you have to do to get the job done, things that aren’t really
of direct importance. It’s like when you drive to work, the actual act of
driving is the important stuff; opening the garage door and backing out
of the driveway are excise tasks, which could, all else being equal, be
skipped or automated.

In programming, excise is the code you have to write to satisfy the
needs of the framework or language. One great example of excise that
Java eliminates is memory management. Spring can eliminate part of
the resource management excise that Hibernate and the underlying
JDBC require.
Licensed to Tricia Fu <tricia.fu@gmail.com>

The Spring Framework 205
Normally, when you have duplicate code, you can refactor out a
method or class. Here, because the duplicate code is resource cleanup
that surrounds the business method, it’s a little more complicated. This
is where templates come in. The important class that Spring provides is
org.springframework.orm.hibernate3.HibernateTemplate. It wraps
up all of the resource-handling code so that you only have to write the
one important method. Our create() method can be rewritten to look
like the following:

import org.hibernate.Hibernate;
import org.hibernate.SessionFactory;
import org.springframework.orm.hibernate3.HibernateTemplate;

protected void create(Event event) {
 SessionFactory sf = HibernateFactory.getSessionFactory();
 HibernateTemplate template = new HibernateTemplate(sf);
 template.saveOrUpdate(event);
}

Notice what we aren’t doing anymore:

❂ Obtaining the session from the SessionFactory
❂ Beginning the transaction.
❂ Catching the checked exceptions and converting the exceptions into

unchecked exceptions (not necessary for version 3.x, but is for 2.x)
❂ Committing the transaction
❂ Flushing changes to the database
❂ Closing the session

That’s quite a few things that we don’t need to worry about because the
HibernateTemplate is taking care of them. As you may notice, the
HibernateTemplate seems to be mainly a wrapper around Session. In
fact, think of it as a “smart” Session, which knows how to open, close,
and clean up after itself. By default, it follows the same single transac-
tion per method model used before. This is pretty simple, but as you

will see later you also have the opportunity to change the scope of

Licensed to Tricia Fu <tricia.fu@gmail.com>

206 CHAPTER 7 Organizing with Spring and data access objects
transactions. There are two basic ways to interact with the Hibernate-
Template: through convenience methods and via callbacks.

Convenience methods

Simple things should be easy. In many cases, what you want to do with
a Session is pretty straightforward: execute a quick save, update a
detached object, or run a HQL query. None of these should require
much ceremony to get accomplished. The HibernateTemplate class pro-
vides basic methods so simple operations can be called with one line of
code. Here’s a quick sample of some of the methods:

import com.manning.hq.ch07.Event;
import com.manning.hq.ch07.HibernateFactory;
import org.springframework.orm.hibernate3.HibernateTemplate;
import java.util.List;

SessionFactory sessionFactory =
HibernateFactory.getSessionFactory();

HibernateTemplate template =
new HibernateTemplate(sessionFactory);
Event event1 = new Event();
event1.setName("Event 1");
Event event2 = new Event();
event2.setName("Event 2");
try {
 template.save (event1);
 template.save (event2);
 Event obj = (Event) template.load(Event.class,
 event1.getId());
 System.out.println("Loaded the event" + obj.getName());

 List events = (List) template.find("from Event");
 System.out.println("# of Events " + events.size());
} finally {
 template.delete(event1);
 template.delete(event2);
}

The convenience methods are typically named exactly the same as

Creates a
template that
connects to the
SessionFactory

Saves an event
in a single
transaction

Loads a
single event

Finds all
events

Deletes a
single event
the methods on the Session. They can be used as a one-for-one

Licensed to Tricia Fu <tricia.fu@gmail.com>

The Spring Framework 207
replacement for direct session calls, without all the hassle of messy
resource cleanup code.

Callbacks

Complex things should be possible as well. Not all operations can eas-
ily be reduced to a single query in a single transaction. For these opera-
tions, Spring provides the Callback interface. It allows you to write a
callback method that will be executed within the template. For exam-
ple, you can use it if you want to build a complex query, update some
data, and then save the changes, all within a single operation:

import org.hibernate.HibernateException;
import org.springframework.orm.hibernate3.HibernateCallback;
import java.sql.SQLException;
import org.hibernate.Query;
import java.util.List;
import java.util.Iterator;
import com.manning.hq.ch07.Event;

template.execute(new HibernateCallback() {
 public Object doInHibernate(Session session)
 throws HibernateException, SQLException {
 Query query = session.createQuery("from Event");
 query.setMaxResults(2);

 List events = query.list();
 for (Iterator it = events.iterator(); it.hasNext();) {
 Event event = (Event) it.next();
 event.setDuration(60);
 }
 return null;
 }
});

Here, the Callback interface uses an anonymous inner class, the Hiber-
nateCallback, which defines only a single method, doInHibernate().
You will always write the body of the method, and then pass the Hiber-
nateCallback object to the template, which then executes it. The
template handles the resource-management code, leaving you only the

task of writing the query logic.

Licensed to Tricia Fu <tricia.fu@gmail.com>

208 CHAPTER 7 Organizing with Spring and data access objects
7.4.2 Beans and their factories

You have seen how Spring can be used programmatically to reduce
resource cleanup code. In addition, it can be used to better organize
the project architecturally. Spring’s traditional claim to fame is that it
is a lightweight container. It excels at working with and configuring
simple JavaBeans. Essentially its role is to act as a factory for build-
ing and configuring beans for your application. This means it can be
used to configure most existing architectures and libraries, including
Hibernate.

A central configuration file

Up to this point, you have configured Hibernate through the combined
use of the hibernate.cfg.xml file (declaratively) and some program-
matic activities, such as using the HibernateFactory. Spring can pro-
vide an alternative way to configure Hibernate entirely declaratively.
The biggest benefit of using Spring is that you can reduce or eliminate
the need for programmatic configuration.

Spring reads an XML file, written in a generic configuration format.
The XML file specifies how to wire together the various objects,
including the DataSource, SessionFactory, and all of your DAOs.
Once you configure the file, you can use it as the central clearinghouse
to look up the DAOs. To illustrate, create at the root of the classpath a
file called applicationContext.xml, which should look like the one
shown in listing 7.3.

Listing 7.3 ApplicationContext.xml, which defines a data source,
session factory, and DAO

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC
 "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
 <bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"

 destroy-method="close"> B

Licensed to Tricia Fu <tricia.fu@gmail.com>

The Spring Framework 209
 <property name="driverClassName">
 <value>com.mysql.jdbc.Driver</value>
 </property>
 <property name="url">
 <value>jdbc:mysql://localhost/events_calendar</value>
 </property>
 <property name="username">
 <value>root</value>
 </property>
 <property name="password">
 <value></value>
 </property>
 </bean>
 <bean id="factory"
 class=
 ➥"org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="mappingResources">
 <list>
 <value>com/manning/hq/ch07/Event.hbm.xml</value>
 <value>com/manning/hq/ch07/Location.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQLDialect
 </prop>
 <prop key="hibernate.show_sql">false</prop>
 </props>
 </property>
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
 </bean>
 <bean id="eventDao"
 class="com.manning.hq.ch07.EventSpringDao">
 <property name="sessionFactory">
 <ref bean="factory" />
 </property>
 </bean>
</beans>

C

D

E

F

Licensed to Tricia Fu <tricia.fu@gmail.com>

210 CHAPTER 7 Organizing with Spring and data access objects
Some of the lines in listing 7.3 require a bit of explanation:

Configures a basic data source, using the Apache Commons database
connection pool (DBCP), which is distributed with Hibernate.

Configures a SessionFactory, using the built-in Spring SessionFac-
tory wrapper, LocalSessionFactoryBean. It builds a SessionFactory
when Spring reads this file. The SessionFactory is stored under the
key factory.

Links the SessionFactory to the data source.

Configures your EventSpringDao and names it eventDao.

Connects the DAO to the session factory. This allows the DAO to
open sessions and issue queries.

The configuration XML file in listing 7.3 holds all the details, things
that can and do often change. It accomplishes a lot of the same things
the hibernate.cfg.xml file does, but also handles building the Session-
Factory for you, as you’ll see in the next section.

Building the ApplicationContext

The applicationContext.xml you just created holds the details for how
to build the session factory. It essentially takes the place of the hiber-
nate.cfg.xml file that you have seen the HibernateFactory use, serving
as a one-for-one replacement. It defines the properties and mapping
files that would normally be in the hibernate.cfg.xml. In our previous
code examples, you needed to build the SessionFactory, or have your
EventDao object locate and connect to the SessionFactory. Spring
inverts that concept. Instead, Spring builds the EventDao for you, and
you need to ask it for a reference to an EventDao, like so:

import
org.springframework.context.support.ClassPathXmlApplicationContext;
import com.manning.hq.ch07.Event;

ClassPathXmlApplicationContext ctx = new

B

C

D

E

F

 ClassPathXmlApplicationContext("applicationContext.xml");
EventSpringDao eventDao =

Licensed to Tricia Fu <tricia.fu@gmail.com>

The Spring Framework 211
 (EventSpringDao) ctx.getBean("eventDao", EventSpringDao.class);
Event event = new Event();
eventDao.saveOrUpdate(event);

The ClasspathXmlApplicationContext looks in the classpath for the
name of the configuration file provided in the instructions. In this case,
the applicationContext.xml file is at the root of the classpath. You can
then request beans by name from the application context. The get-
Bean() method takes two parameters: the name of the bean you want
(eventDao), and the type of class you expect back (EventSpringDao).

Under the covers, Spring is building the SessionFactory and connect-
ing all the beans together. We mentioned earlier that Spring works
with JavaBeans. All of the <bean> elements in the applicationCon-
text.xml file need to be JavaBeans. This includes the EventSpringDao,
which looks something like this:

public class EventSpringDao extends AbstractSpringDao{
 public EventSpringDao(){}

 public Event find(Long id){
 return (Event) super.find(Event.class, id);
 }

 // Other methods excluded
}

In addition to other benefits mentioned earlier, Spring provides
org.springframework.orm.hibernate3.support.HibernateDaoSupport,
a layer supertype for application DAOs. It manages the SessionFac-
tory field and provides helpful methods to deal with Sessions, logging,
and the HibernateTemplate. Here’s a sample of a few of its methods:

public abstract class HibernateDaoSupport
 implements InitializingBean {
 protected final Log logger;
 private HibernateTemplate hibernateTemplate;
Licensed to Tricia Fu <tricia.fu@gmail.com>

212 CHAPTER 7 Organizing with Spring and data access objects
 public final void
 setSessionFactory(SessionFactory sessionFactory);
 public final SessionFactory getSessionFactory();

 public final void
 setHibernateTemplate(HibernateTemplate hibernateTemplate);
 public final HibernateTemplate getHibernateTemplate();

 protected final Session getSession()
 throws DataAccessResourceFailureException,
 IllegalStateException;
 protected final void closeSessionIfNecessary(Session session);
}

It provides some basic methods, but let’s choose to override the Hiber-
nateDaoSupport object in order to provide a few more convenience
methods. Listing 7.4 shows what your class should look like.

Listing 7.4 Layer supertype for your application DAOs

package com.manning.hq.ch07;

import java.util.List;
import
 org.springframework.orm.hibernate3.support.HibernateDaoSupport;

public abstract class AbstractSpringDao
 extends HibernateDaoSupport{

 public AbstractSpringDao() { }

 protected void saveOrUpdate(Object obj) {
 getHibernateTemplate().saveOrUpdate(obj);
 }

 protected void delete(Object obj) {
 getHibernateTemplate().delete(obj);
 }

 protected Object find(Class clazz, Long id) {
 return getHibernateTemplate().load(clazz, id);
 }
Licensed to Tricia Fu <tricia.fu@gmail.com>

The Spring Framework 213
 protected List findAll(Class clazz) {
 return getHibernateTemplate().find(
 "from " + clazz.getName());
 }
}

The key thing to note is that the AbstractSpringDao uses its parent’s
sessionFactory field. HibernateDaoSupport provides getters and set-
ters, and Spring uses these setter methods to connect the SessionFac-
tory. Recall these lines from the applicationContext.xml file:

<bean id="eventDao" class="com.manning.hq.ch07.EventSpringDao>
 <property name="sessionFactory">
 <ref bean="factory" />
 </property>
</bean>

This snippet calls setSessionFactory(), passing in the SessionFactory
we configured, which we named factory. As you can see from the
AbstractSpringDao, which is an evolution of AbstractDao, you have
completely removed most of the resource-management code from the
find() method. Everything is being handled by the HibernateTemplate
and HibernateDaoSupport instead.

Creating a registry

Our final refinement is to bring all of this together and create a central
registry, which developers can use to get references to the DAOs or
the SessionFactory directly. By having a single class, CalendarRegis-
try, you ensure that future developers have an explicit, single, strongly
typed class they can use, without having to know the details going on
underneath. Figure 7.3 shows how everything will fit together.

Using Spring, you get the benefits of configuration, allowing you to
easily swap data sources, databases, and add new domain objects. List-
ing 7.5 shows CalendarRegistry.
Licensed to Tricia Fu <tricia.fu@gmail.com>

214 CHAPTER 7 Organizing with Spring and data access objects
Listing 7.5 CalendarRegistry, a central class for
organizing the DAOs

package com.manning.hq.ch07;

import org.springframework.context.ApplicationContext;
import
org.springframework.context.support.ClassPathXmlApplicationContext;
import org.hibernate.SessionFactory;

public class CalendarRegistry {
 private static ApplicationContext ctx;

 static {
 ctx = new ClassPathXmlApplicationContext(
 "applicationContext.xml");
 }

 private CalendarRegistry() {
 }

 public static SessionFactory getSessionFactory() {
 return (SessionFactory) ctx.getBean(

 "factory", SessionFactory.class);
 }

 public static EventSpringDao getEventDao() {
 return (EventSpringDao)ctx.getBean(

 "eventDao", EventSpringDao.class);
 }
}

EventDao

+getEventDao()

CalendarRegistry

+getBean()

ApplicationContext

CreatesConfigures

Figure 7.3 A diagram of CalendarRegistry, obtaining a reference to EventDao
Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 215
As you can see in listing 7.5, CalendarRegistry is a Singleton, but
because it’s backed by Spring, you can easily swap out the underlying
implementation. It loads a single static ApplicationContext from the
classpath, and then uses it to give out references. Now client objects
can get a reference to the EventDao anywhere in the project, without
needing to know anything about Spring:

EventSpringDao eventDao = CalendarRegistry.getEventDao();
eventDao.saveOrUpdate(event);

More Spring tools

As you have seen, using Spring can greatly simplify much of the
Hibernate resource-management code. We have shown two levels of
involvement you can use. The HibernateTemplate can be used pro-
grammatically inside your DAOs, or you can use Spring’s lightweight
container to manage the DAOs themselves.

Spring is a fairly straightforward framework, but we haven’t scratched
the surface of what it can do here. Spring also provides a Transaction
API management framework, an AOP framework, and a Runtime-
Exception framework that can inspect the fairly obtuse SQLException
that most databases issue and convert them into more obvious and
catchable exceptions. For more information, see the Spring documen-
tation, which is pretty solid overall.

The focus of this chapter has been on improving the organization of
your application code. We have looked at ways to keep your HQL
code together, using the DAO pattern. We have further improved our
initial implementation by adding another pattern, the Layer Supertype,
which allows addition of more DAOs without excessive code duplica-
tion as new domain objects are added to your projects.

7.5 Summary
Licensed to Tricia Fu <tricia.fu@gmail.com>

216 CHAPTER 7 Organizing with Spring and data access objects
This chapter also explored how to use Spring, another popular open
source project, to help manage the boilerplate resource-management
code that Hibernate needs. Spring provides both a programmatic
option, the HibernateTemplate, and a pluggable, configurable one, the
ApplicationContext. Adding a central CalendarRegistry provides a
way to use Spring to give out references within the project, without
having to include a monolithic Singleton.
Licensed to Tricia Fu <tricia.fu@gmail.com>

8
Web frameworks: WebWork,
Struts, and Tapestry

This chapter covers

• A brief overview of MVC

• Session management in the web environment

• Web frameworks and Hibernate

he Java programming language, with its accompanying specifications, is a
popular choice for building web applications. The J2EE architecture that
Sun has developed, specifically the Servlet API, has given Java developers

the ability to create reliable, interactive web applications. As fundamentally
useful as the Servlet API has been, it has proved to be a bit cumbersome. It
provides little help toward organizing a large-scale project, and adding new
functionality can be messy.

In absence of early guidance from Sun, enterprising Java developers
have invented their own web frameworks. A dizzying array of open
source and some commercial frameworks have arisen to fill the void.
While all of them utilize the Servlet API, each is slightly different and has
its own idiosyncrasies. The goal of this chapter is to learn how to inte-
grate Hibernate with a few of the more popular open source frameworks.

T

217

The frameworks we are going to cover are Struts, the reigning king of the

Licensed to Tricia Fu <tricia.fu@gmail.com>

218 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Model-View-Controller (MVC) frameworks; WebWork 2, an evolu-
tionary refinement on the Struts model; and Tapestry, a component-
oriented framework that is a very different way to skin the web appli-
cation cat.

To that end, you are going to build a sample calendar web application,
which allows a user to browse through the months and quickly see
what events are scheduled for each month. The application will be
fairly simple—only a single page—but should provide an opportunity
to see how Hibernate can be integrated with the various frameworks.

Before we get started with the example applications, we’ll spend some
time discussing the MVC pattern, as well as other common patterns
we’ll use in the example applications. Then we’ll turn our attention to
decoupling Hibernate from the web framework, a common topic when
developers are just getting started with web applications.

Chapter goals

In this chapter, you’ll accomplish the following:

❂ Know the basics of what a J2EE MVC pattern looks like.
❂ Create an Event Calendar web application using WebWork.
❂ Rewrite the application using Struts.
❂ Rewrite the application with Tapestry.
❂ Outline the general principle of using Hibernate in a web

application.

Assumptions

Since it is impractical to explore three different web frameworks com-
pletely in a single chapter, we assume that you have some familiarity
with at least one of the frameworks and just want to know how Hiber-
nate fits in with it. We have used the same core persistence architec-
ture, which is fleshed out in the WebWork section (8.4), then reused
again in the Struts section (8.5), and again for Tapestry (8.6). This
arrangement allows you to skip ahead to see how your framework fits

together with Hibernate.

Licensed to Tricia Fu <tricia.fu@gmail.com>

A quick overview of MVC 219
We also assume you are familiar with servlet containers, like Tomcat,
Resin, or Jetty. Since the examples in the chapter are packaged as web
application archives (WARs), you’ll need to get a servlet container in
order to run the examples.

Before we delve into the details of each web framework, let’s talk about
what your new web application is going to do. As we mentioned, it’s
going to be a fairly simple one-page application. The basic idea is that
you’ll have a bunch of events every month that you want publicize to
your web readers. Here’s the list of features your calendar should have:

1 Create a visual monthly calendar similar to one you might see in
Microsoft Outlook. It should display a single month at time.

2 Each day that has events scheduled should list the names of those
events.

3 Include navigation controls so the user can page back and forth
between the months.

4 By default, the current month’s events should be displayed.

To give you a sneak preview, figure 8.1 shows what your page will
look like.

As you see, the current month’s events are displayed in a table-based
calendar. Back and Next links allow users to go back and forth among
the months. Note that the URL is from the WebWork application, but
the basic display will be the same for all of the applications.

Hibernate is commonly used as the persistence service in web applica-
tions. This section provides a brief overview of a common web applica-
tion design pattern and discusses how Hibernate fits into it. Of course,

8.1 Defining the application

8.2 A quick overview of MVC
the design we present isn’t the only way to build web applications, but

Licensed to Tricia Fu <tricia.fu@gmail.com>

220 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
some variation on the theme is fairly common. Later, we discuss how to
use Hibernate with specific web application frameworks. We have cho-
sen three popular web application frameworks: WebWork, Struts, and
Tapestry. Before we delve into each framework, let’s review the com-
mon pattern they all share: Model-View-Controller.

The MVC architecture, also called Model 2, is a design pattern com-
monly used to separate an application into three primary concerns:

❂ The representation of the data
❂ The business logic, or rules, of an application
❂ The view the user has of the data representation

The MVC pattern isn’t limited to web applications. In fact, MVC is
used throughout the Swing library. Figure 8.2 shows a diagram of the
basic MVC pattern.

Figure 8.1 The Event Calendar application in action, showing events

for November 2004
Licensed to Tricia Fu <tricia.fu@gmail.com>

A quick overview of MVC 221
The MVC pattern can be described by examining the lifecycle of a user
request. Your client, defined as a user interacting with a web browser,
submits a request to the Controller. The Controller resides on the serv-
let container and defines the behavior of the application. Application
behavior means how the application reacts to user requests. Typically,
the Controller performs some update on the state of the Model. Once
the Model has been updated, the user is presented with an updated
View of the Model. Let’s look at the responsibilities of each component
in the MVC pattern:

The Model does the following:

❂ Stores the application state
❂ Returns the results of queries to the application state
❂ Informs the View of changes to the application state

The View is responsible for

❂ Displaying, or rendering, the Model to the user
❂ Sending user responses from the Controller

The Controller handles the following:

❂

Controller

View

Client Model

requests updates

updatessees

Figure 8.2 A diagram of the Model-View-Controller pattern
Performs application behavior

Licensed to Tricia Fu <tricia.fu@gmail.com>

222 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
❂ Updates the Model on behalf of user requests
❂ Determines the View that should be displayed to the user

Suppose your events management application is web based, and a user
wants to make a change to a specific Event instance. Figure 8.3 displays
the lifecycle of the user request.

As displayed in figure 8.3, the user submits a request to the controller
servlet. The user request contains the changes made to the state of
the Event instance. Assume that the user changed the name of the
Event. The controller servlet passes the request off to the EventMan-
ager class to retrieve the appropriate Event instance and update its
name property. Once this task is complete, the controller servlet sends
the user a response notifying him or her that the request has been
processed successfully.

Why did we use the EventManager class to update the state of the Event?
Why didn’t the servlet simply update the Event instance itself instead of
delegating to the manager class? You’ll find out in the next section.

8.2.1 Service Layer pattern

Two primary problems can occur when the controller component
(like the servlet we just described) accesses business objects, such as

Web User Servlet

EventManager
request new

return
success
page

updateEvent(...)
Figure 8.3 An application sequence diagram

Licensed to Tricia Fu <tricia.fu@gmail.com>

A quick overview of MVC 223
an Event instance, in the domain model directly. First, the controller
is directly dependent on the domain model. Any changes to the
domain model will require changes to the controllers that interact
with the model.

Second, since there is no consistent way to interact with the domain
model, it’s easy for controller components to misuse the business
objects. For example, if you have numerous controllers interacting
with Event instances, you must somehow ensure that all of the neces-
sary error handling and validation is performed.

To get around these two problems, you can use the Service Layer pat-
tern, also called the Business Delegate pattern, to provide a consistent
interface to classes in the domain model. In this example, the Service
Layer pattern is implemented by the EventManager class. Internally, the
EventManager delegates persistence calls to an EventDao instance, while
performing business operations itself. (You’ll recall that we discussed
the DAO pattern in the previous chapter.)

The EventManager class is shown in listing 8.1.

Listing 8.1 EventManager class

package com.manning.hq.ch08;

import com.manning.hq.ch08.Event;
import com.manning.hq.ch08.EventDao;

 public class EventManager {

 public EventManager() {
 }

 public void save(Event e) throws ServiceLayerException {
 new EventDao().save(e);
 }

 public void delete(Event e) throws ServiceLayerException {
 new EventDao().delete(e);
 }
 public void delete(Long id) throws ServiceLayerException {

Licensed to Tricia Fu <tricia.fu@gmail.com>

224 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
 Event e = new Event();
 e.setId(id);
 this.delete(e);
 }

 public Event get(Long id) throws ServiceLayerException {
 return new EventDao().find(id);
 }
}

The version of the EventManager class in listing 8.1 just delegates all
calls to the EventDao, like the non-Spring version we worked on in sec-
tion 7.3. As the application grows and becomes more complex, addi-
tional business logic can be placed in the EventManager. Let’s look at an
example of adding a delegated method call to the EventManager.

We’ll examine two examples of the kinds of methods you might find in
the EventManager class. One is pretty simple and just compares two
Events. The second example utilizes our DAO class to associate an
Attendee with an Event instance. First, we’ll look at the comparator.

Suppose you need to compare two Event instances. Start out by creat-
ing an EventComparator class, which implements the java.util.Com-
parator interface. The methods from this comparator are shown in
listing 8.2.

Listing 8.2 EventComparator

package com.manning.hq.ch08;

import java.util.Comparator;
import com.manning.hq.ch08.Event;

public class EventComparator implements Comparator {

 public int compare(Object a, Object b) {
 if ((a == null) || !(a instanceof Event)) {
 throw new RuntimeException("First object is null or"+
 " not an instance of Event");
 } else if ((b == null) || !(b instanceof Event)) {

 throw new RuntimeException("Second object is null or"+

Licensed to Tricia Fu <tricia.fu@gmail.com>

A quick overview of MVC 225
 " not an instance of Event");
 }

 Event e0 = (Event) a;
 Event e1 = (Event) b;
 // just do a simple comparison
 return e0.getId().compareTo(e1.getId());
 }

 public boolean equals(Object o) {
 if (o == null) {
 return false;

 } else {
 // this isn't a robust equality check,
 // but it works for our purposes.
 return (o instanceof EventComparator);
 }
 }

}

With the EventComparator done, add the delegate method call to Event-
Manager:

public int compare(Event a, Event b) {
 return new EventComparator().compare(a, b);
}

The controller servlet then calls the compare(Object, Object) method
in the EventManager class. Some software developers don’t like moving
all of the business logic into the service layer. Instead, they prefer to
stick with a pure object-oriented design and have all of the business
logic operations reside in the domain object. While we agree with this
philosophy in principle, it’s often more convenient to create a service
layer containing the business logic when building web applications.

Our comparator example is a bit contrived. In most cases, you’d proba-
bly find a method comparing domain objects in the domain objects

themselves. Next, let’s look at the EventManager method that assigns an

Licensed to Tricia Fu <tricia.fu@gmail.com>

226 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Attendee to an Event. This example is slightly more complicated since
you’ll be using two DAO classes. The code is shown in listing 8.3.

Listing 8.3 Assigning an Attendee to an Event

public class EventManager {
 public void addAttendeeToEvent(Long eventId, Long attendeeId) {
 AttendeeDao attendeeDao = new AttendeeDao();
 Attendee attendee =
 attendeeDao.find(Attendee.class, attendeeId);

 EventDao eventDao = new EventDao();
 Event event =
 eventDao.find(Event.class, eventId);

 event.getAttendees().add(attendee);
 eventDao.save(event);
 eventDao.getSession().close();
 }
…
}

Suppose you’re building a relatively simple application, with about 5–
10 objects in your domain model. Should you go through the extra
work of creating a service layer? It really depends on the application.
Probably the most useful advice is to start out building your applica-
tion without a service layer component. If it later makes sense to intro-
duce a service layer, refactor the application code.

For instance, you may want to start the application with a service layer
if you plan on having multiple application clients, like a web client and
a standalone application accessing the same data. Figure 8.4 shows an
example.

Instead of duplicating the business logic in the web and standalone cli-
ents, the service layer allows you to centralize the business logic in the
application.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Decoupling Hibernate from the web layer 227
Now that you understand the basic web application architecture, let’s
look at the common problems developers run into when building web
applications with Hibernate.

Applications are typically broken up into concerns. A concern is made
up of a specific unit of functionality, like security or, in the case of
Hibernate, persistence. Most concerns are only accessed by one other
concern in the application, but some, like logging, are used by all con-
cerns within an application.

Developers typically have difficulty decoupling Hibernate from the
web tier in three areas, which we describe in this section. Later, we’ll
examine how to address these pitfalls using some of the popular web
application frameworks.

8.3.1 Working with detached objects

Suppose a user wants to edit an object. In a web application, this typi-
cally means that the user makes a request to the server, which retrieves
the object from the database and presents it to the user in an editable

8.3 Decoupling Hibernate from the web layer

Standalone
Application

Web
Application

View
(HTML <table>)

View
(Swing JTable)

Controller
servlet

Service
Layer DAO

Figure 8.4 Multiple application clients using the same service layer
format, such as an HTML form. The user makes changes and submits

Licensed to Tricia Fu <tricia.fu@gmail.com>

228 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
the form. The application typically validates the input data and then
stores the updated object in the database.

As you know by now, you always access persistent object using the
Session interface. Up to this point, you’ve persisted and updated
objects using one Session instance. Next we’re going to talk about how
updates to an object can span multiple Sessions.

Suppose you want to make changes to an object that has already been
persisted. In a single Session scenario, you retrieve the desired object
from the Session, make changes, and save it:

Session s = factory.openSession();
Transaction t = s.beginTransaction();
Event e = (Event) s.get(Event.class, myEventId);
e.setName("New Event Name");
s.saveOrUpdate(e);
t.commit();
s.close();

This becomes slightly more complicated in a web application; you have
to first retrieve the object and send it to the user:

Session s = factory.openSession();
Event e = (Event) s.get(Event.class, myEventId);
s.close();
// send the object to the web application user

By closing the Session instance, you’re detaching the Event instance
from the Session that loaded it. When the user submits the changes to
the object, you have to open a new Session and reassociate the Event
instance with a Session:

Session s = factory.openSession();
Transaction t = s.beginTransaction();
// update our Event instance

s.saveOrUpdate(e);

Licensed to Tricia Fu <tricia.fu@gmail.com>

Decoupling Hibernate from the web layer 229
t.commit();
s.close();

How you associate a detached object with a Session can depend on the
web application framework you use. Managing detached objects also
impacts another decision you have to make when building your Hiber-
nate web application: the scope of the Session object.

8.3.2 Session scope

You’ll recall from chapter 3 that Session objects are meant to be short-
lived, generally used for a single database operation or transaction. In
the context of web applications, a single database operation would be,
for instance, retrieving an object for display in the view tier. Typically,
a Session exists for the duration of a user request, and is then dis-
carded. This is referred to as request-scoped Sessions.

An alternative is to disconnect the Session from the JDBC connection
that it maintains and store the Hibernate Session in the user’s
javax.servlet.http.HttpSession. (You guessed it: session-scoped Ses-
sions.) When the user submits the changes, call Session.reconnect()
to obtain a new JDBC connection and commit your changes. An exam-
ple of this process is shown in listing 8.4, using a hypothetical servlet.

Listing 8.4 Disconnecting a Session from the JDBC connection

public void service(HttpServletRequest req,
 HttpServletResponse res) {
 // … obtain the SessionFactory instance
 Session s = factory.openSession();
 if (!s.isConnected()) {
 s.reconnect();
 }
 // … perform some unit of work, like retrieving an object
 s.disconnect();
 HttpSession session = req.getSession();
 session.setAttribute("hibernate.session", session);
}

Licensed to Tricia Fu <tricia.fu@gmail.com>

230 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
While listing 8.4 is a fairly contrived example, there is still a drawback
with this approach. There’s no guarantee that the user will ever submit
the form, leaving the Session in the user’s HttpSession until the latter
expires. Hibernate Sessions are small, but it’s still unnecessary over-
head. Because of that, you’re going to create a new Session object for
each incoming request. With that decided, let’s determine how you’ll be
getting Sessions in the first place.

8.3.3 Accessing the Session from the Controller

Let’s look at two different scenarios for obtaining Sessions. In the first,
assume the web application is relatively simple and that the Controller
uses Hibernate Sessions directly. Next, we’ll see what happens when
we use the Service layer architecture with our web application.

If your Controller interacts with the Session directly, you’ll need to
determine the best way to obtain the Session from the SessionFac-
tory. Also, you’ll have to close the Session when you’ve finished with
it. The first solution, using an initialization servlet, addresses part of
the problem.

An initialization servlet creates the SessionFactory and places it into
the ServletContext scope. Once there, the Controller servlets can
obtain the SessionFactory to get Sessions. It is then up to the servlet to
close the Session object. Listing 8.5 shows the initialization servlet.

Listing 8.5 Initialization servlet

package com.manning.hq.ch08;

import java.io.IOException;

import javax.servlet.GenericServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

import org.hibernate.HibernateException;

import org.hibernate.SessionFactory;

Licensed to Tricia Fu <tricia.fu@gmail.com>

Decoupling Hibernate from the web layer 231
import org.hibernate.cfg.Configuration;

public class SessionFactoryInitServlet extends GenericServlet {

 public void init(ServletConfig cfg) throws ServletException {
 super.init(cfg);
 SessionFactory f = null;

 try {
 f = new Configuration().
 configure().buildSessionFactory();
 } catch(HibernateException e) {
 e.printStackTrace();
 }

 getServletContext().setAttribute("session.factory", f);
 }

 public void service(ServletRequest req,
 ServletResponse res) throws ServletException,
 IOException {
 }

}

Next, you need to tell the web server to start your initialization servlet
before any others. To do so, edit the web.xml file as shown here:

<servlet>
 <servlet-name>initServlet</servlet-name>
 <display-name>initServlet</display-name>
 <servlet-class>
 com.manning.hq.ch08.SessionFactoryInitServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

Finally, your controller servlets need to obtain and close Session
instances. Listing 8.6 displays the relevant methods.

Creates the
SessionFactory
using the
hibernate.cfg.xml file

Inserts the
SessionFactory into
the ServletContext
Licensed to Tricia Fu <tricia.fu@gmail.com>

232 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Listing 8.6 Obtaining and closing sessions

package com.manning.hq.ch08;

import javax.servlet.http.HttpServlet;

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.SessionFactory;

public class ControllerServlet extends HttpServlet {

 public Session getSession() {
 Session session = null;
 SessionFactory f =
 (SessionFactory)getServletContext().
 getAttribute("session.factory");

 try {
 session = f.openSession();
 } catch(HibernateException e) {
 e.printStackTrace();
 } return session;
}

 public void closeSession(Session session) {
 try {
 session.close();
 } catch(HibernateException e) {
 e.printStackTrace();
 }
 }
}

The problem with using the initialization servlet is that you are forced
to close the Session instance, which can be easily forgotten. To
improve upon this method, you’ll use a relatively new feature of serv-
lets: filters.

Servlet filters

Servlet filters intercept requests and responses, allowing you to manip-
ulate or transform the contained information. While we’re not going to

delve into filters in great detail, the following example should give you

Licensed to Tricia Fu <tricia.fu@gmail.com>

Decoupling Hibernate from the web layer 233
an initial idea of what filters can do. The filter class shown in listing 8.7
has two responsibilities. First, it places a Session instance into the serv-
let request scope. The controller servlet retrieves the Session and uses
it. Second, the filter has to close the Session instance.

Listing 8.7 Session management filter

package com.manning.hq.ch08;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

import org.hibernate.SessionFactory;

public class SessionFilter implements Filter {

 private SessionFactory factory;

 public void init(FilterConfig cfg) throws ServletException {
 factory =
 new Configuration().configure().buildSessionFactory();
 }

 public void doFilter(ServletRequest req, ServletResponse res,
 FilterChain chain) throws ServletException {

 Session session = factory.openSession();
 req.setAttribute("hibernate.session", session);
 try {
 chain.doFilter(req, res);
 }
 finally {
 if ((session != null) && (session.isOpen())) {
 session.close();
 }
 }
 }

 public void destroy() {}
}

Initializes the
SessionFactory

Opens a
new Session

Places the Session into the request scope

Calls the next item in
the filter chain, which
is your servlet

After the servlet returns,
closes the Session
Licensed to Tricia Fu <tricia.fu@gmail.com>

234 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Once the filter is created, you need to edit the web.xml file to config-
ure it. Configuring the filter consists of telling the application server
which requests should pass through the filter. Listing 8.8 shows the
filter configuration.

Listing 8.8 Filter configuration

<filter>
 <filter-name>smFilter</filter-name>
 <filter-class>com.manning.hq.ch08.SessionFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>Session Management Filter Mapping</filter-name>
 <servlet-name>myControllerServlet</servlet-name>
</filter-mapping>
<servlet>
 <servlet-name>myControllerServlet</servlet-name>
 <servlet-class>
 com.manning.hq.ch08.ControllerServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>myControllerServlet</servlet-name>
 <url-pattern>/controller</url-pattern>
</servlet-mapping>

Using the configuration in listing 8.8, your filter will always be called
before myControllerServlet is executed. The filter guarantees that you
will always have a valid Hibernate Session before the request reaches
the servlet and that the Session will be properly cleaned up when the
request has finished with it.

Of course, if you have multiple controller servlets in the application,
you need to intercept each of them. If there is a common naming
scheme for all servlets, you can simply use a URL pattern instead of a
servlet name, for example:

Declares the filter

Maps the filter to the
desired servlet

Declares the servlet

Maps the servlet to
a URL pattern
<filter-mapping>
 <filter-name>Session Management Filter Mapping</filter-name>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Decoupling Hibernate from the web layer 235
 <url-pattern>*Servlet</url-pattern>
</filter-mapping>

Making the Hibernate Session available to the Controller is fairly
straightforward using either of the two methods detailed above. If
you’re using a web framework, such as Struts, you have other options
for making Sessions available. We’ll look at the options for each frame-
work in the next section.

8.3.4 Accessing the Session from the Service layer

Since the Service layer is encapsulated from the web application, you
can’t easily pass the Session instance to the relevant classes from the
web layer. Instead, one component of the Service layer, the DAO,
needs to obtain Sessions. A preferred pattern for this is the Thread
Local Session.

The Thread Local Session pattern makes use of the java.lang.Thread-
Local class to create a Session that is accessible from a single applica-
tion thread. This is particularly convenient in multithreaded
applications, such as web applications. The core of the pattern is
defined in one class, shown in listing 8.9.

Listing 8.9 Thread Local Session provider

package com.manning.hq.ch08;

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class ServiceLocator {
 private static final ThreadLocal t = new ThreadLocal();
 private static SessionFactory factory;

 static {
 try {
 factory =
 new Configuration().configure().buildSessionFactory();

Builds the SessionFactory
 } catch (HibernateException e) {

Licensed to Tricia Fu <tricia.fu@gmail.com>

236 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
 e.printStackTrace();
 }
 }

 public static Session getSession()
 throws HibernateException {
 Session s = (Session) t.get();
 if (s == null) {
 s = factory.openSession();
 t.set(s);
 }
 return s;
 }

 public void closeSession() {
 Session s = (Session) t.get();
 if (s != null) {
 try {
 s.close();
 } catch (HibernateException e) {
 e.printStackTrace();
 }
 }
 t.set(null);
 }

}

If there is any magic to the ServiceLocator class, it’s in how the
ThreadLocal class behaves. By storing the initialized Session instance
in the ThreadLocal variable, you are ensured that only one Session is
created per request thread. When the Session is retrieved the first
time, a new Session is opened by the SessionFactory and set in the
ThreadLocal instance. Subsequent calls to getSession() return the
same Session instance as long as the Session hasn’t been closed with a
call to closeSession().

Why is this valuable? DAOs frequently need to access the same Ses-
sion object over multiple method calls, and the Thread Local Session

Retrieves the
Session from the
ThreadLocal
instance

If the returned Session is
null, opens a new Session

Sets it as the
current Session for
the ThreadLocal
instance

Sets the contained
Session to null
pattern guarantees that behavior. Reusing the same Session during the

Licensed to Tricia Fu <tricia.fu@gmail.com>

Decoupling Hibernate from the web layer 237
life of an application thread also provides better performance com-
pared with needlessly creating multiple Sessions.

Next, let’s look at how you’ll use the ServiceLocator class with the
Service Layer pattern. In chapter 7, we introduced the EventDao class,
which extends the AbstractDao class. AbstractDao retrieves the Hiber-
nate Session from the HibernateFactory class, which we also intro-
duced in chapter 7. The problem with HibernateFactory is that it is not
thread safe. In this example, you’ll extend AbstractDao so that it takes
advantage of the ServiceLocator class. Listing 8.10 shows the new
AbstractServiceLocatorDao implementation.

Listing 8.10 AbstractServiceLocatorDao using the
ServiceLocator class

package com.manning.hq.ch08;

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.Transaction;

import com.manning.hq.ch08.AbstractDao;

public abstract class AbstractServiceLocatorDao
 extends AbstractDao {
 private Session session;
 private Transaction tx;

 public AbstractServiceLocatorDao() {
 }

 protected void startOperation() throws HibernateException {
 session = ServiceLocator.getSession();
 tx = session.beginTransaction();
 }
}

You only needed to override startOperation() to use the ServiceLoca-
tor class instead of HibernateFactory. This small change allows you to
consistently access the same Session instance throughout the lifetime

of an application thread. Another option for accessing Sessions is to

Licensed to Tricia Fu <tricia.fu@gmail.com>

238 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
use the excellent Spring Framework, discussed in chapter 7. The next
section discusses WebWork, as well as Spring.

WebWork 2.0 is a Java web application framework. To quote the
project website, it is “built specifically with developer productivity and
code simplicity in mind.”1 It is, at its heart, a refined evolutionary ver-
sion of the Model-View-Controller pattern that Struts pioneered and
popularized for Java web applications.2 Like Struts, there is a control-
ler, which is a Java class. The controller handles the request, and then
forwards control over to a view that handles the display.

Before we can proceed, you need to get a copy of WebWork 2.0. Do
this by going to www.opensymphony.com/webwork/ and clicking on
the Download link at the right. As of this writing, the current ver-
sion is 2.1.7. Extract this to the applications directory where Hiber-
nate is installed.

8.4.1 WebWork fundamentals

The core class, or interface in WebWork’s case, is com.opensym-
phony.xwork.Action. It defines a very simple execute method, which the
developer will implement to do something interesting. It looks like this:

public String execute() throws Exception;

The execute method will typically handle the request and make the
results available as a getter field on the action. WebWork automatically
stores the action where the view, typically a JSP, can access the result.
The String value that execute() returns determines which view (JSP)
will be used to generate the HTML.

8.4 WebWork

1 www.opensymphony.com/webwork
2 For the sake of completeness, the original MVC pattern originated with Smalltalk, and was
modified for stateless web use by Struts.

Licensed to Tricia Fu <tricia.fu@gmail.com>

WebWork 239
One of the basic responsibilities of any Java web application is con-
verting URLs into method calls on a Java object. Like Struts, Web-
Work uses a central XML configuration file that maps the URL to an
individual Action. That file is the xwork.xml file.3 Here’s what a sam-
ple Action mapping might look like:

<action name="calendar" class="com.manning.hq.ch08.CalendarAction">
 <result name="success"
 type="dispatcher">/calendar-ww.jsp</result>
</action>

This code maps the URL /calendar.action to the class CalendarAction.
When a user requests that URL, the CalendarAction.execute()

method will be called, and then control will be forwarded to the /calen-
dar-ww.jsp to display the results.

“*.action” is WebWork’s commonly accepted mapping extension pat-
tern that allows the web application to know that the URL is handled
by WebWork in general. This is roughly equivalent to Struts’ /do/* or
*.do pattern mappings. For both frameworks, you would specify the
pattern matching in the web.xml to tell the Servlet API how to redirect
requests to the framework.

8.4.2 Creating controllers

Having covered the basic interaction of WebWork, let’s go ahead and
create the CalendarAction and the /calendar.jsp page. The main
responsibility of the CalendarAction is to load all the events for a given
month and put them into the view (see listing 8.11).

3 What is this XWork that we keep mentioning? XWork is actually a separate, derivative
project from WebWork, but since WebWork doesn’t function without it, for the sake of

simplicity, we are just going to refer to it all as WebWork for now.

Licensed to Tricia Fu <tricia.fu@gmail.com>

240 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Listing 8.11 CalendarAction, which loads the Event data into the page

package com.manning.hq.ch08;

import java.util.Calendar;
import java.util.List;

import com.manning.hq.ch08.EventDao;
import com.opensymphony.webwork.ServletActionContext;
import com.opensymphony.xwork.ActionSupport;

public class CalendarAction extends ActionSupport
 implements EventDaoAware {
 private EventDao eventDao;
 private int month = 0;
 private int year = 0;

 private CalendarModel calendar;
 private Integer nextMonth = null;
 private Integer nextYear = null;
 private Integer previousMonth = null;
 private Integer previousYear = null;

 public CalendarAction() {
 Calendar thisMonth = Calendar.getInstance();
 month = thisMonth.get(Calendar.MONTH);
 year = thisMonth.get(Calendar.YEAR);
 }

 public void setEventDao(EventDao eventDao) {
 this.eventDao = eventDao;
 }

 public void setMonth(int month) { this.month = month; }
 public void setYear(int year) { this.year = year; }

 public Integer getNextMonth() { return nextMonth; }
 public Integer getNextYear() { return nextYear; }
 public Integer getPreviousMonth() { return previousMonth; }
 public Integer getPreviousYear() { return previousYear; }

 public String execute() throws Exception {

Sets the default month/
year to this month

B

Sets via Inversion
of ControlC

Provides properties for
Webwork to bind

HttpParameters to

D

Exposes parameters for JSP view E

Creates a View Helper for
the chosen month/year F
 calendar = new CalendarModel(month, year);
 List events = eventDao.findEventsFor(month, year);

Licensed to Tricia Fu <tricia.fu@gmail.com>

WebWork 241
 calendar.setEvents(events);
 ServletActionContext.getRequest().
 setAttribute("calendar", calendar);

 // Compute and Store next and
 // previous months for navigation

 Calendar next =
 DateUtils.createCalendarMonth(
 month + 1, 1, this.year);
 nextMonth = new Integer(next.get(Calendar.MONTH));
 nextYear = new Integer(next.get(Calendar.YEAR));

 Calendar previous =
 DateUtils.createCalendarMonth(
 month - 1, 1, year);
 previousMonth = new Integer(previous.get(Calendar.MONTH));
 previousYear = new Integer(previous.get(Calendar.YEAR));

 return SUCCESS;
 }

}

As you see, this Action has a lot going on; it has even delegated some
responsibility to a View Helper, CalendarModel and a data access
object, EventDao. Let’s walk through what it is doing step by step:

Since the default is the current month and year, in the constructor you
set these values from a Calendar object.

This code uses WebWork’s Inversion of Control (IoC) to get a refer-
ence to an EventDao. For now, just consider it magic; we will investi-
gate how it works a bit later.

By providing setter methods, WebWork will automatically bind Http-
Parameters to the Action. In this case, month = 10 and year = 2004, so
setMonth(10) and setYear(2004) will be called prior to the execute()
method being called.

These four methods allow the Webwork JSP to access the fields on
this action.

Finds events and loads
them into view helperG

Shows how to
expose objects in

HttpServletRequest H

Stores previous and
next months/years

for page navigation I

B

C

D

E

Licensed to Tricia Fu <tricia.fu@gmail.com>

242 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
The CalendarModel is a View Helper, which organizes the list of events
into a simplified grid so the JSP can display them.

This code finds all the events for the given month/year and stores them
in the CalendarModel, which sorts them.

Normally, WebWork exposes variables and objects to the JSP view
using getter and setter methods. Alternatively, you should know how
to access HttpServletRequest, where you store your CalendarModel so
that you can access it using the JSP Standard Tag Library (JSTL) in
the view.

Knowing the current month/year, calculate the last and next months
and store the values so the JSP can build the navigation links.

Data access object

The next class we are going to examine is the EventDao. This class is
built off the basic AbstractDao, which you built in chapter 7. In this
case, you are just going to look at the findEventsFor() method:

import java.util.Date;
// … Other statements omitted

/**
 * Find all events in the given month and year.
 * @param month - 0-11 (0 = January)
 * @param year
 */
public List findEventsFor(int month, int year) {
 List events = null;
 try {
 startOperation();
 Date firstDay = DateUtils.newDate(month, 1, year);
 Date lastDay = DateUtils.newDate(month + 1, 1, year);
 String q =
 "from Event event where "+
 "event.startDate >= :firstDay and "+
 "event.startDate < :lastDay";
 Query query = getSession().createQuery(q);

F

G

H

I

 query.setParameter("firstDay", firstDay);

Licensed to Tricia Fu <tricia.fu@gmail.com>

WebWork 243
 query.setParameter("lastDay", lastDay);
 events = query.list();
 getTx().commit();
 } catch (HibernateException e) {
 handleException(e);
 } finally {
 HibernateFactory.close(getSession());
 }
 return events;
}

Here you construct two java.util.Date objects, which form the
bounds of the given month. Your query then uses these two dates and
finds all Events with a startDate field in between them. Note that the
month is 0 (zero-based) because, for some unexplained, inane design
reason, java.util.Calendar months are 0 (zero-based). So just play
nicely with it.

Date manipulations are often a bit of a pain due the cumbersome
nature of java.util.Calendar. You often find yourself with a Factory
object, such as the DateUtils object, which can create Dates for queries
like this:

package com.manning.hq.ch08;

import java.util.Calendar;
import java.util.Date;

public class DateUtils {
 /**
 * Creates a Date, at 00:00:00 on the given day.
 *
 * @param month 0-11 (0 = January)
 * @param date
 * @param year
 */
 public static Date newDate(int month, int date, int year){
 Calendar inst = Calendar.getInstance();

 inst.clear();
 inst.set(year, month, date);

Licensed to Tricia Fu <tricia.fu@gmail.com>

244 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
 return inst.getTime();
 }
}

Calendar models

Show any two developers an architecture, and tell them to pick out
which classes are part of the Controller and/or Model and you are
likely to get two different answers. Nonetheless, here, our “model” (as
we call it) consists of several classes, including our domain model, the
Event. However, to avoid complicating the view, let’s add a few more
classes to the model, as shown in listing 8.12.

Listing 8.12 CalendarModel, which builds a 7x6 grid of calendar days
that can hold events

package com.manning.hq.ch08;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

import com.manning.hq.ch08.Event;

public class CalendarModel {
 private Date date;
 private List rows = new ArrayList();
 /**
 * Creates a Model for the given month and year. Builds a 7x6
 * grid that is full of empty days.
 * @param month 0-11 (0 = January)
 * @param year
 */
 public CalendarModel(int month, int year){
 Calendar m = Calendar.getInstance();
 m.set(year, month, 1);
 date = m.getTime();
 int dayOfWeek = m.get(Calendar.DAY_OF_WEEK);

Creates an
empty month
 int offsets = 0;

Licensed to Tricia Fu <tricia.fu@gmail.com>

WebWork 245
 int currentDay = 0;
 boolean done = false;
 for(int i = 0; i < 6; i++){
 ArrayList row = new ArrayList();
 for(int j = 0; j < 7; j++){
 offsets++;
 if(offsets >= dayOfWeek && !done){
 currentDay++;
 }
 row.add(new CalendarDay(currentDay));
 if(m.get(Calendar.MONTH) > month){
 currentDay = 0;
 done = true;
 }else {
 m.add(Calendar.DATE, 1);
 }
 }
 rows.add(row);
 }
 }

 public Date getDate() { return date; }
 public void setDate(Date date) { this.date = date; }

 /**
 * Sorts a list of Events into their proper days.
 * @param events
 */
 public void setEvents(List events) {
 Calendar date = Calendar.getInstance();
 date.clear();
 // Put each event into the correct day.
 for (Iterator it = events.iterator(); it.hasNext();) {
 Event ev = (Event) it.next();
 date.setTime(ev.getStartDate());
 int weekOfMonth = date.get(Calendar.WEEK_OF_MONTH) - 1;
 int dayOfWeek = date.get(Calendar.DAY_OF_WEEK) - 1;
 List row = getRow(weekOfMonth);
 CalendarDay day = (CalendarDay) row.get(dayOfWeek);
 day.addEvent(ev);
 }

Sorts events
into the days
 }

Licensed to Tricia Fu <tricia.fu@gmail.com>

246 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
 /**
 * Iterated over by the JSP.
 * @return
 */
 public List getRows() { return rows; }

 /**
 * Get row at the given index.
 * @param rowNumber
 * @return
 */
 private List getRow(int rowNumber){
 return (List) rows.get(rowNumber);
 }
}

The class in listing 8.12 seems a bit complex, but the net result is to
greatly simplify the JSP presentation logic. One of the bigger chal-
lenges of displaying information in a useful, attractive fashion in an
HTML page is that essentially everything has to be either a table or a
list. By using a View Helper pattern, like CalendarModel, the JSP just
has to iterate over rows and columns to build a table. All of the compli-
cated sorting code can be left as a Java class (where it can very easily
be tested by JUnit).

The three important methods to examine are the constructor, which
builds the empty grid; setEvent(), which sorts; and getRows(), which
is what the JSP will use to iterate over. The ugly details of sorting and
grid building are kept private in CalendarModel, where no doubt an
enterprising developer can streamline them without having to worry
about changing either the JSP or CalendarAction. The final piece of
the model is the CalendarDay, a simple value object that holds the event
and the number to display on the page (see listing 8.13). Each Calen-
darDay represents a single grid square in your calendar table.
Licensed to Tricia Fu <tricia.fu@gmail.com>

WebWork 247
Listing 8.13 CalendarDay, a simple value object that holds events
and the day

package com.manning.hq.ch08;

import java.util.ArrayList;
import java.util.List;

import com.manning.hq.ch08.Event;

public class CalendarDay {
 private List events = new ArrayList();
 private int day;

 public CalendarDay(int currentDay) { day = currentDay; }
 public void addEvent(Event event){
 events.add(event);
 }
 public int getDayOfMonth() { return day; }
 public List getEvents() { return events; }

 public boolean isNotEmpty() {
 return day != 0;
 }
}

Now that we have defined both the Model and Controller, the final
piece of the puzzle is the JSP view (see listing 8.14), which is used to
display your CalendarModel. In the view layer here, you will use a mix-
ture of both WebWork’s tag libraries and JSTL. Most J2EE web
frameworks have their own tag libraries, which handle some of the
basics such as iteration and the display of values and URLs. WebWork
is no exception. WebWork’s form processing and presentation tag
libraries are excellent and well worth using, though we won’t see them
in action here. We recommend you check out WebWork in Action (Man-
ning, forthcoming) for more details on WebWork’s tag library.

However, it is often far easier to just use JSTL, which works identi-
cally in any JSP-based web framework, like Struts, WebWork, or

Spring MVC. If you work on as many different projects as we do,

Licensed to Tricia Fu <tricia.fu@gmail.com>

248 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
you might see how knowing one set of tag libraries beats learning
three or four.

Listing 8.14 calendar-ww.jsp, the view for your Action

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>
<%@ taglib prefix="ww" uri="webwork" %>
<HTML><HEAD><TITLE>Event Calendar</TITLE>
<LINK href="<ww:url value="'style.css'" />"
 type="text/css" rel="stylesheet" /></HEAD>
<BODY>
<TABLE class=border cellSpacing=0
 cellPadding=4 width="100%" border=0>
 <TR><TD class=thBorder colSpan=7>
 <a href="<ww:url value="/calendar.action">
 <ww:param name="'month'" value="previousMonth" />
 <ww:param name="'year'" value="previousYear" />
 </ww:url>">Back
 Events for <fmt:formatDate value="${calendar.date}"
 pattern="MMMM yyyy"/>
 <a href="<ww:url value="/calendar.action">
 <ww:param name="'month'" value="nextMonth"/>
 <ww:param name="'year'" value="nextYear"/>
 </ww:url>">Next
 </TD></TR>
 <TR>
 <TD class=td2>Sun</TD>
 <TD class=td2>Mon</TD>
 <TD class=td2>Tue</TD>
 <TD class=td2>Wed</TD>
 <TD class=td2>Thu</TD>
 <TD class=td2>Fri</TD>
 <TD class=td2>Sat</TD>
 </TR>
<c:forEach items="${calendar.rows}" var="row">
 <TR>
 <c:forEach items="${row}" var="day">
 <TD class=td1 vAlign=top width="15%">
 <TABLE>

Uses WebWork’s
url tag to import
a .css sheet

Uses WebWork’s
url tag to create
navigation

Calls getPreviousMonth() on action

Displays the
current month
and year

Iterates over
each row

Iterates over each
column in a row
Licensed to Tricia Fu <tricia.fu@gmail.com>

WebWork 249
 <TR>
 <TD colSpan=2><c:if test="${day.notEmpty}">
 <U><c:out value="${day.dayOfMonth}"/></U></c:if>
 </TD>
 <TR>
 <c:forEach items="${day.events}" var="event">
 <TR><TD>-<c:out value="${event.name}"/></TD></TR>
 </c:forEach>
 </TR>
 </TABLE>
 </TD>
 </c:forEach></TR>
</c:forEach>
</TABLE></BODY></HTML>

The calendar-ww.jsp in listing 8.14 is doing several important things.
Let’s take a look.

Builds the navigation

Using the <ww:url /> and <ww:param /> tags, calendar-ww.jsp creates
the links for forward and backward navigation to scroll back and forth
between the months. The only tricky thing you might not understand is
the syntax. When you see this:

 <ww:param name="'year'" value="nextYear"/>

the tag is creating a parameter year and looking up the value of next-
Year from WebWork’s ValueStack. How the value stack works is out-
side the scope of this book, but it ultimately calls getNextYear() on
your CalendarAction. Using the single quotes means that year is string
literal and isn’t looked up, as nextYear is.

Builds the Calendar table

Using the <c:forEach /> and <c:out /> JSTL tags, calendar-ww.jsp
iterates over the calendar model object to display the contents of each
grid square. This is where your CalendarModel pays dividends as the
iteration code is pretty simple to understand.

Displays the number for the
day, if day is populated

Iterates over each
event in a day

Displays the name
of the event
Licensed to Tricia Fu <tricia.fu@gmail.com>

250 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Displays the day

The final iteration is over the Event in each day. With no events, noth-
ing is displayed. You also do a quick <c:if /> to test that a day is
notEmpty, and if not, you display an underlined number. Many of the
CalendarDay objects are empty, to represent the blank cells, so you
have to check here for that.

Applies some style

Since style matters, you use the <ww:url /> tag to import a Cascading
Style Sheet, style.css, to make your table look a bit nicer. For more
information on CSS, check out Cascading Style Sheets: The Definitive
Guide, 2nd edition, by Eric Meyer (O’Reilly, 2004).

IoC components

One piece that we left out was how the EventDao was actually “bound”
to the CalendarAction; we just called it “magic.” Now let’s look behind
the magician’s curtain to see how it works. Enabling components
involves a few steps. First, you need to add a few lines to web.xml,
which should look like the one in listing 8.15, in its entirety.

Listing 8.15 web.xml for WebWork

<web-app>
 <filter>
 <filter-name>container</filter-name>
 <filter-class>
com.opensymphony.webwork.lifecycle.RequestLifecycleFilter
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>container</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <listener>
 <listener-class>
com.opensymphony.webwork.lifecycle.ApplicationLifecycleListener
 </listener-class>
 </listener>

 <listener>

Licensed to Tricia Fu <tricia.fu@gmail.com>

WebWork 251
 <listener-class>
com.opensymphony.webwork.lifecycle.SessionLifecycleListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>webwork</servlet-name>
 <servlet-class>
com.opensymphony.webwork.dispatcher.ServletDispatcher
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>webwork</servlet-name>
 <url-pattern>*.action</url-pattern>
 </servlet-mapping>
 <taglib>
 <taglib-uri>webwork</taglib-uri>
 <taglib-location>
 /WEB-INF/lib/webwork-2.1.5.jar
 </taglib-location>
 </taglib>
</web-app>

All of the filters and listeners in listing 8.15 are needed so that compo-
nents will be correctly bound. In addition, you need to create a /WEB-
INF/classes/components.xml file, which defines the components. It
should look like this:

<components>
 <component>
 <scope>request</scope>

<class>com.manning.hq.ch08.EventDao</class>
 <enabler>
 com.manning.hq.ch08.webwork.EventDaoAware
 </enabler>
 </component>
</components>

If you look back at CalendarAction, you will see that it implements

Defines WebWork servlet
that handles all the requests

Maps all requests that
look like *.action to be
handled by WebWork

Lets JSP use the
WebWork tag library
EventDaoAware, which is how WebWork knows to give it an instance of

Licensed to Tricia Fu <tricia.fu@gmail.com>

252 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
EventDao. WebWork allows you to specify the scope of the component,
which can be request, session, or application. Here, you state that a
new EventDao should be created for every request and given to an
action that implements EventDaoAware, which looks like this:

package com.manning.hq.ch08;

import com.manning.hq.ch08.EventDao;

public interface EventDaoAware {
 public void setEventDao(EventDao eventDao);
}

Finally, the xwork.xml file needs a bit of modification to identify which
actions should have components bound to them. Here’s what the com-
pleted xwork.xml file looks like:

<xwork>
 <include file="webwork-default.xml"/>
 <package name="default" extends="webwork-default">
 <interceptors>
 <interceptor-stack name="componentStack">
 <interceptor-ref name="component"/>
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>
 </interceptors>
 <default-interceptor-ref name="componentStack"/>
 <action name="calendar"
 class="com.manning.hq.ch08.webwork.CalendarAction">
 <result name="success"
 type="dispatcher" >/calendar-ww.jsp</result>
 </action>
 </package>
</xwork>

A lot is going on here, but the important thing is that each action has a
stack of interceptors. Think of interceptors as “things that happen

before execute() is called.” In addition to binding parameters to the

Licensed to Tricia Fu <tricia.fu@gmail.com>

Struts 253
action, you need to configure the components that should be bound to
the action. By defining the componentStack, and stating it as the
default, you ensure that all actions will use components. By using the
<include /> statement, which pulls the webwork-default.xml from
webwork.jar file, you can use the component and defaultStack inter-
ceptors that are specified in webwork-default.xml.

To sum up, WebWork’s IoC framework can be useful, even it it’s not
as well developed or robust as Spring at the moment. In particular, we
have found that when we use Spring on projects, we tend not to use
WebWork’s IoC.

Struts is a popular MVC web application framework, closely tied to
the Servlet and JavaServer Pages specifications. Struts utilizes a cen-
tralized controller servlet to preprocess user requests and distribute
them to special action classes. Action classes, written by the developer,
determine the business logic that should be executed, and then forward
the user to the next view component. The view components may be
JSP pages, but other view technologies, such as Velocity and Extensi-
ble Stylesheet Language Transformations (XSLT), are also supported.
Struts also provides internationalization and a validation framework.

Struts is an open source project sponsored by the Apache Software
Foundation and is released under the Apache License. You can down-
load the latest release of Struts from http://struts.apache.org/acquir-
ing.html. The latest version at the time of this writing is 1.2.4. To use
the example application, extract the downloaded bundle to the applica-
tions directory used throughout the book.

This section uses the same business classes as the WebWork section,
with some minor differences. The duplication is intentional, since we
want to demonstrate that it doesn’t really matter which web application
framework you choose—the Hibernate code stays the same.

8.5 Struts
Licensed to Tricia Fu <tricia.fu@gmail.com>

254 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
8.5.1 Struts fundamentals

For the developer, the primary class is org.apache.struts.Action. The
Action class provides a method for processing user requests and redi-
recting or forwarding them to a view component. All Actions in a
Struts application must subclass the Action class, or one of its ances-
tors. Let’s look at the execute(…) method:

public ActionForward execute(ActionMapping mapping,
 ActionForm form, HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {…}

The execute(…) method has four arguments. The ActionMapping repre-
sents the mapping of an incoming user request to a specific Action
class. It is passed to the Action class in case the Action needs to per-
form some utility operation, such as accessing the application configu-
ration or looking up a view location. All of the action mappings for an
application are defined in the Struts configuration file, struts-con-
fig.xml. An example action mapping is shown here:

<action-mappings>
 <action name="calendarForm" path="/calendar"
 type="com.manning.hq.ch08.struts.StrutsCalendarAction">
 <forward name="success" path="calendar-struts.jsp"/>
 </action>
</action-mappings>

The ActionForm parameter represents the input parameters from the
user request. An ActionForm is a simple JavaBean that is associated
with one or more action mappings. ActionForms are also defined in the
struts-config.xml:

<form-beans>
 <form-bean name="calendarForm"
 type="com.manning.hq.ch08.struts.StrutsCalendarForm"/>
</form-beans>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Struts 255
Notice that the name of the form bean, calendarForm, is also used as the
value in the action mapping configuration. This is so the ActionMapping
class knows which form to use when processing a user’s input request.

When a user clicks on a link or submits a form on a web page, the sub-
mitted parameters are bound to the properties in the ActionForm. For
example, let’s say the user submits a form with two parameters: month
and year. Retrieving the parameters from the HttpServletRequest
object looks like this:

int month = Integer.parseInt(req.getParameter("month"));
int year = Integer..parseInt(req.getParameter("year"));

Performing this type of conversion for each input parameter is tedious
and error-prone. Note that we didn’t check for null values or Number-
FormatExceptions. With our ActionForm, the conversion from String to
int is performed for us:

int month = calendarForm.getMonth();
int year = calendarForm.getYear();

Converting the user’s request to the ActionForm instance is performed
for us. ActionForms can also be reused for different actions, thus reduc-
ing the number of classes needed in an application. Another advantage
of ActionForms is that they can be validated using the Jakarta Com-
mons Validator.

The Commons Validator package provides a mechanism that validates
user input and returns error messages if validation fails. Although the
Commons Validator can be extremely difficult to learn, it’s well worth
the flexibility and power that it can provide.

The remaining parameters to the execute(…) method are the standard
HttpServletRequest and HttpServletResponse objects from the Servlet
API. They are passed in case the Action class needs to do custom
processing, such as streaming a PDF to the user instead of sending him
or her to another view.
Licensed to Tricia Fu <tricia.fu@gmail.com>

256 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Assuming the user is to be sent to a view or another Action class, the
ActionForward class represents the resource the user will be sent to.

Since Struts uses a single controller servlet to dispatch requests to the
appropriate Action classes, we need to configure the servlet to process
all incoming requests with a given extension. The standard extension is
*.do, and is reflected in the web.xml configuration shown in listing 8.16.

Listing 8.16 web.xml Struts configuration

<web-app>
<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>
</web-app>

This web.xml will force all URLs ending in *.do to pass through the
Struts controller servlet so that your Action classes can process the
requests. Next, we’ll look at creating our Action class for the calendar
example.

8.5.2 Building Struts Actions

The Action class is the basic unit of work in a Struts application. For
the example application, you have one Action class, StrutsCalendar-
Action. It is responsible for placing Event objects for the current month

Defines the
servlet class

Defines the
location of the

configuration file

Maps the servlet to the URL
Licensed to Tricia Fu <tricia.fu@gmail.com>

Struts 257
and year into the HttpServletRequest scope for display to the user. The
code for this Action class is displayed in listing 8.17.

Listing 8.17 StrutsCalendarAction class

package com.manning.hq.ch08.struts;

import java.io.IOException;
import java.util.List;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

public class StrutsCalendarAction extends Action {

 public ActionForward execute(ActionMapping mapping,
 ActionForm form, HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

 StrutsCalendarForm calendarForm =
 (StrutsCalendarForm) form;
 EventServiceLocatorDao dao =

 new EventServiceLocatorDao();
 int month = calendarForm.getMonth();
 int year = calendarForm.getYear();

 StrutsCalendarModel calendar =
 new StrutsCalendarModel(month, year);

 List events = dao.findEventsFor(month, year);
 calendar.setEvents(events);
 req.setAttribute("calendar", calendar);

 return mapping.findForward("success");
 }

}

Casts the ActionForm to
the appropriate subclass

Creates the
EventServiceLocatorDao

Creates a new
StrutsCalendarModel

Retrieves a
list of
events for a
given month
and year

Sets the events
in the model

Sets the model in the
request scope

Forwards the user
to the forward
defined in the

action mapping

Licensed to Tricia Fu <tricia.fu@gmail.com>

258 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
The StrutsCalendarAction class is pretty simple. Once you get the
request parameters, you use them to query the database and put the
search results in your StrutsCalendarModel. In the previous section,
you created a subclass of the CalendarModel to simplify your presenta-
tion logic.

Struts calendar model

The StrutsCalendarModel class (listing 8.18) extends the Calendar-
Model introduced in the WebWork section. It provides some additional
getters for display assistance in the JSP.

Listing 8.18 StrutsCalendarModel class

package com.manning.hq.ch08.struts;

import java.util.Calendar;

import com.manning.hq.ch08.CalendarModel;
import com.manning.hq.ch08.DateUtils;

public class StrutsCalendarModel extends CalendarModel {

 private Integer nextMonth;
 private Integer nextYear;
 private Integer previousMonth;
 private Integer previousYear;

 public StrutsCalendarModel(int month, int year) {
 super(month, year);
 initNavigationDates();
 }

 protected void initNavigationDates() {
 Calendar next = DateUtils.createCalendarMonth(
 month + 1, 1, this.year);
 nextMonth = new Integer(next.get(Calendar.MONTH));
 nextYear = new Integer(next.get(Calendar.YEAR));
 Calendar previous = DateUtils.createCalendarMonth(
 month - 1, 1, this.year);
 previousMonth = newInteger(
 previous.get(Calendar.MONTH));
 previousYear = new Integer(
 previous.get(Calendar.YEAR));

 }

Licensed to Tricia Fu <tricia.fu@gmail.com>

Struts 259
 // getters omitted
}

Since Struts actions cannot be referenced from the JSP in the way the
WebWork actions can, we’ve moved the presentation assistance to the
StrutsCalendarModel class. Once the model has been populated and
placed into the request, the user is sent to the JSP page.

Viewing events

The JSP page used to display events is based on the previous Web-
Work example. It is shown in listing 8.19.

Listing 8.19 calendar-struts.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>
<HTML>
<HEAD><TITLE>Event Calendar</TITLE>
<c:url var="css" value="style.css"/>
<LINK href="<c:out value="${css}"/>"
 type="text/css" rel="stylesheet"/>
</HEAD>
<BODY>
<TABLE class="border" cellSpacing="0" cellPadding="4"
 width="100%" border="0">
 <TR>
 <TD class="thBorder" colSpan=7>
 <c:url var="previous" value="/calendar.do">
 <c:param name="month" value="${calendar.previousMonth}"/>
 <c:param name="year" value="${calendar.previousYear}"/>
 </c:url>
 <a href="<c:out value="${previous}"/>">Previous
 Events for
 <fmt:formatDate value="${calendar.date}" pattern="MMMM yyyy"/>
 <c:url var="next" value="/calendar.do">
 <c:param name="month" value="${calendar.nextMonth}"/>
 <c:param name="year" value="${calendar.nextYear}"/>
 </c:url>
 <a href="<c:out value="${next}"/>">Next
 </TD></TR>
 <TR>

 <TD class=td2>Sun</TD>

Licensed to Tricia Fu <tricia.fu@gmail.com>

260 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
 <TD class=td2>Mon</TD>
 <TD class=td2>Tue</TD>
 <TD class=td2>Wed</TD>
 <TD class=td2>Thu</TD>
 <TD class=td2>Fri</TD>
 <TD class=td2>Sat</TD>
 </TR>
<c:forEach items="${calendar.rows}" var="row">
 <TR>
 <c:forEach items="${row}" var="day">
 <TD class=td1 vAlign=top width="15%">
 <TABLE>
 <TR>
 <TD colSpan=2>
 <c:if test="${day.notEmpty}">
 <U>
 <c:out value="${day.dayOfMonth}"/>
 </U>
 </c:if></TD>
 <TR>
 <c:forEach items="${day.events}" var="event">
 <TR><TD>-<c:out value="${event.name}"/></TD></TR>
 </c:forEach>
 </TR>
 </TABLE>
 </TD>
 </c:forEach>
 </TR>
</c:forEach>
</TABLE>
</BODY>
</HTML>

The JSP used to display the Event instances for the Struts application
is remarkably similar to the WebWork JSP. The only difference is that
you are able to omit the Struts tag libraries completely while achieving
the same display result.

In the Struts version of the application, you use the Service Locator

pattern instead of the Spring Framework. Spring can also be used with

Licensed to Tricia Fu <tricia.fu@gmail.com>

Tapestry 261
Struts, although here we chose to illustrate a different method with the
Struts version of the application.

Next we present Hibernate integration with our third and final web
framework: Tapestry.

Tapestry is yet another open source framework, but it’s cut from a dif-
ferent mold than the previous two frameworks, Struts and WebWork.
Instead of following the conventional Model 2 framework, with a Serv-
let-like action forwarding to a JSP or Velocity view, Tapestry is a com-
ponent-based framework. Every page is a component, and can contain
other components. Instead of a JSP page, Tapestry has its own HTML
template that parses and uses the components to render HTML
dynamically. Due to its component-based nature, it’s easy to break
down complicated pages into smaller bite-sized chunks.

8.6.1 Getting started

Before we get started, you will need to get a copy of Tapestry. Go to
http://jakarta.apache.org/tapestry/ and click on the binary download at
the left. Unzip it to the applications directory next to where you
installed Hibernate. Because of Apache license restrictions, two impor-
tant Java libraries, javassist.jar and ognl.jar, are not distributed with it.
We have included them as part of our source code, but you can also
find them at http://prdownloads.sourceforge.net and www.ognl.org/,
respectively.

8.6.2 Tapestry fundamentals

Tapestry, like all frameworks, has its own set of core objects and con-
cepts. Central to it are the HTML templates, which make up the view;
page objects, which are the Controllers; and page specification files,
which wire the controllers and views together. At its simplest, a single-

8.6 Tapestry
Licensed to Tricia Fu <tricia.fu@gmail.com>

262 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
page Tapestry application consists of one template, one page specifica-
tion, and a single class.

Like a straight Model 2 framework, such as WebWork and Struts,
there is a central object you as a developer implement: org.apache.
tapestry.html.BasePage. Unlike with those frameworks, there is no
central execute() method you need to implement.4 Instead, you can
“call back” into the page object from your template. This may sound a
bit confusing, but it highlights the different approach that Tapestry
offers, especially if you are already used to the Model 2 style. Let’s
work through an example that should make everything clear.

8.6.3 HTML views

With Tapestry’s focus on the HTML template, we will start in the front
and work our way to the back. As previously mentioned, Tapestry
doesn’t use JSPs; instead it uses its own template language, which is
designed to be HTML editor friendly. Unlike a JSP using tag libraries
or Java code, which is typically not viewable in an HTML editor, Tap-
estry templates use HTML constructs, which are parsed out and
replaced dynamically with the HTML. Perhaps it’s easier to demon-
strate than it is to explain, so let’s take a look at a sample template.
Since we are re-implementing our Event Calendar using Tapestry, the
template shown in listing 8.20 does the same thing as the previous two
we have seen.

Listing 8.20 Home.html: a Tapestry template for the main Event
Calendar page

<HTML>
<HEAD><TITLE>Event Calendar</TITLE>
<LINK href="style.css" type="text/css" rel="stylesheet" />
</HEAD>
<BODY>

4 Note that this isn’t strictly true with WebWork, as you can name your execute() method

differently. But Tapestry isn’t as focused on a “central” controller method.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Tapestry 263
<TABLE class="border" cellSpacing="0" cellPadding="4"
 width="100%" border="0">
 <TR>
 <TD class="thBorder" colSpan="7">
 Back
 Events for
 Next
 </TD></TR>
 <TR>
 <TD class="td2">Sun</TD>
 <TD class="td2">Mon</TD>
 <TD class="td2">Tue</TD>
 <TD class="td2">Wed</TD>
 <TD class="td2">Thu</TD>
 <TD class="td2">Fri</TD>
 <TD class="td2">Sat</TD>
 </TR>
 <span jwcid="@Foreach"
 source="ognl:calendarModel.rows" value="ognl:row">
 <TR>

 <TD class=td1 vAlign=top width="15%">
 <TABLE>
 <TR>
 <TD colSpan="2">
 <span jwcid="@Conditional"
 condition="ognl:day.notEmpty">
 <U>
 <span jwcid="@Insert"
 value="ognl:day.dayOfMonth" />
 </U>

 </TD>
 </TR>
<TR>
 <span jwcid="@Foreach"
 source="ognl:day.events"
 value="ognl:event">
 <TR><TD>-
 <span jwcid="@Insert"

Generates the
back link,
using a
component

Displays a
formatted dateGenerates the forward link

Iterates over the rows of the calendar model

Iterates over
the days

Displays an
underlined day

Iterates over
the events
 value="ognl:event.name" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

264 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
 </TD></TR>

 </TR>
 </TABLE>
 </TD>

 </TR>

</TABLE>
</BODY>
</HTML>

As you can see in listing 8.20, in the place of the <c:forEach> and
<c:out > tags that JSTL uses, normal HTML tags with some
extra attributes are used—most importantly, the jwcid attributes. The
jwcid identifies a component (think a tag library) that generates
HTML. When Tapestry parses this template, it replaces the
tags with the generated HTML. There are two kinds of components
here: built-in (all of those with the @ symbol, such as @Foreach and
@Insert), and some custom templates, such as backLink and nextLink.

Probably the most basic component, @Insert is the logically equivalent
to the JSTL <c:out />. Where does it obtain the value to display?
Instead of looking through the HttpServletRequest attributes, it uses
Object Graph Notation Language (OGNL) to call methods on the
BasePage. As an example, the ognl:formattedDate expression calls get-
FormattedDate() on the BasePage object.

8.6.4 Page controller

Behind every Tapestry template is a backing page object. In this case,
the template we looked at needs to get information about the Calendar-
Model (so that it can iterate over it), the URL links (to navigate
through the months), and the Date of the current month. That informa-
tion comes from the BasePage object, which you have to implement
here. Let’s take a look at the CalendarPage object (listing 8.21).

Displays the
event day
Licensed to Tricia Fu <tricia.fu@gmail.com>

Tapestry 265
Listing 8.21 CalendarPage, the page controller for Home.hml

package com.manning.hq.ch08.tapestry;

import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.List;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.html.BasePage;

import com.manning.hq.ch08.Event;
import com.manning.hq.ch08.CalendarDay;
import com.manning.hq.ch08.CalendarModel;
import com.manning.hq.ch08.DateUtils;
import com.manning.hq.ch08.EventManager;

public class CalendarPage extends BasePage {
 private List row;
 private CalendarDay day;
 private Event event;
 private int month;
 private int year;
 private int previousMonth;
 private int previousYear;
 private int nextMonth;
 private int nextYear;
 private CalendarModel model;

 public CalendarPage() {
 Calendar thisMonth = Calendar.getInstance();
 month = thisMonth.get(Calendar.MONTH);
 year = thisMonth.get(Calendar.YEAR);
 storeNextMonth();
 storePreviousMonth();
 }
 public List getRow() { return row; }
 public void setRow(List row) { this.row = row; }
 public CalendarDay getDay() { return day; }
 public void setDay(CalendarDay day) { this.day = day; }
 public Event getEvent() { return event; }
 public void setEvent(Event event) { this.event = event; }

Defines methods for
iterating over the rows,
days, and events
 public int getPreviousMonth() { return previousMonth; }

Licensed to Tricia Fu <tricia.fu@gmail.com>

266 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
 public int getPreviousYear() { return previousYear; }
 public int getNextMonth() { return nextMonth; }
 public int getNextYear() { return nextYear; }

 public String getFormattedDate(){
 SimpleDateFormat f = new SimpleDateFormat("MMMM yyyy");
 return f.format(getCalendarModel().getDate());
 }

 public CalendarModel getCalendarModel(){
 if(model == null){
 loadModel();
 }
 return model;
 }

 public void link(IRequestCycle cycle){
 Object[] params = cycle.getServiceParameters();
 month = ((Integer) params[0]).intValue();
 year = ((Integer) params[1]).intValue();
 loadModel();
 storeNextMonth();
 storePreviousMonth();
 }

 private void loadModel() {
 EventManager manager = (EventManager) getVisit();
 List eventsFor = manager.findEventsFor(month, year);
 model = new CalendarModel(month, year);
 model.setEvents(eventsFor);
 }

 private void storePreviousMonth() {
 Calendar previous =
 DateUtils.createCalendarMonth(month - 1,
 1, year);
 previousMonth = previous.get(Calendar.MONTH);
 previousYear = previous.get(Calendar.YEAR);
 }

 private void storeNextMonth() {
 Calendar next =

Allows references
from template by
ognl:formattedDate

Allows templates to
get model with
ognl:calendarModel

Handles the
backLink and
forwardLink
requests

Contains the visit, a central
management object
 DateUtils.createCalendarMonth(month + 1,
 1, this.year);

Licensed to Tricia Fu <tricia.fu@gmail.com>

Tapestry 267
 nextMonth = next.get(Calendar.MONTH);
 nextYear = next.get(Calendar.YEAR);
 }
}

Looking at listing 8.21, you can see a lot of the same things that we did
in the previous Actions. The basic responsibility of the controller is to
load the events, storing them in a CalendarModel and making them
available to the view. The controller provides methods that allow the
@Foreach components to iterate over getRows(), getDays(), and
getEvents(). Finally, it exposes the getPreviousMonth(), getPrevious-
Year(), getNextMonth(), and getNextYear() fields so the forward and
back links can be created.

The loadModel() method is where Hibernate shows up. One of the
Tapestry central concepts is the Visit object, which is the central
“manager”-type object that Tapestry creates for you and stores in the
HttpSession. This allows different pages to share state without having
to muck about with the session itself. The actual Visit object, which
you can get a handle to by using getVisit(), can be any kind of object
you want. In this case, you have a simple EventManager object that del-
egates Hibernate calls to your EventDao, like so:

public List findEventsFor(int month, int year) {
 return new EventDao().findEventsFor(month, year);
}

8.6.5 Page specification

You may be wondering about a couple of things: how the Home.html
page knows which class to get its information from, and how the back-
Link and nextLink components generate the HTML for the hyperlinks.
The answer to both of these mysteries is the page specification file. The
page specification is a file that shares the same name as the HTML
page, which wires the Java class and HTML template together. It’s

roughly analogous to the struts-config.xml or xwork.xml file, except

Licensed to Tricia Fu <tricia.fu@gmail.com>

268 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
that each page gets its own file. Listing 8.22 shows the page specifica-
tion for Home.html.

Listing 8.22 /WEB-INF/Home.page, the page specification
for Home.html

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification
 class=

"com.manning.hq.ch08.tapestry.CalendarPage">
 <component id="backLink" type="DirectLink">
 <binding name="listener" expression="listeners.link"/>
 <binding name="parameters"

expression="{previousMonth,previousYear}"/>
 </component>
 <component id="nextLink" type="DirectLink">
 <binding name="listener" expression="listeners.link"/>
 <binding name="parameters"

expression="{nextMonth,nextYear}"/>
 </component>
</page-specification>

As you can see the, <page-specification> element defines which page
class acts as Home.html’s controller. Also, it defines two components:
backLink and nextLink. Both of them inherit from @DirectLink, which
generates an <a> link to the CalendarPage. The listener <binding> calls
the link() method, passing the getPreviousYear() and getPrevious-
Next() values as parameters. Looking back at the link() method, you
retrieve those values from the IRequestCycle object that Tapestry pro-
vides you. Defining components in the page specification simplifies the
template, which makes the page designer’s job a bit easier. But the
complexity has to go somewhere, so it moves to the page specification.

Links Home.html
to CalendarPage

Makes backLink
a hyperlink

Calls the
link() method
when clicked
Licensed to Tricia Fu <tricia.fu@gmail.com>

Tapestry 269
8.6.6 web.xml

The final piece is the web.xml. Like with the other Model 2 framework,
it defines a Front Controller servlet that handles requests. In addition,
Tapestry allows you to define which class acts as the Visit class (list-
ing 8.23).

Listing 8.23 web.xml for the Tapestry web application

<web-app>
 <servlet>
 <servlet-name>calendar</servlet-name>
 <servlet-class>
 org.apache.tapestry.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>
 org.apache.tapestry.visit-class
 </param-name>
 <param-value>
 com.manning.hq.ch08.tapestry.EventManager
 </param-value>
 </init-param>
 <load-on-startup>0</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>calendar</servlet-name>
 <url-pattern>/calendar</url-pattern>
 </servlet-mapping>
 <filter>
 <filter-name>redirect</filter-name>
 <filter-class>
 org.apache.tapestry.RedirectFilter
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>redirect</filter-name>
 <url-pattern>/</url-pattern>
 </filter-mapping>
 <welcome-file-list>
 <welcome-file>Home.html</welcome-file>
 </welcome-file-list>
</web-app>

Defines the Visit class

Specifies the
welcome page
Licensed to Tricia Fu <tricia.fu@gmail.com>

270 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Most of what you see in listing 8.23 is a stock web.xml for a Tapestry
project. The only variations are noted in the listing. Using a servlet
<init-param>, you tell Tapestry what kind of class you want to use as
your visit object. A <welcome-file> element defines which template is
your welcome file.

A frequent topic of debate when building web applications is what
mechanism should be used to send data to the view layer. We’re not
referring to editable data. When editing, you’ll typically convert the
domain object into some easily rendered representation before present-
ing the form to the user. For instance, Struts uses an ActionForm class.
We’re more concerned about displaying read-only data to the user.

A common approach to displaying data in the view layer is to create a
separate set of objects called data transfer objects (DTOs). DTOs are
created by a transfer object assembler and sent to the view layer for
display. DTOs are used because the view typically requires values
from more than one domain object. A DTO is used to combine a num-
ber of requests for a given view.

If you take advantage of Hibernate’s proxying and lazy collections, you
can effectively bypass creating the DTOs and the logic used to create
them, and simply use your domain objects in the view. The only
requirement is that a Hibernate Session must be available in the view
tier, which is possible when you use a servlet filter or Spring to manage
your Session instances. Despite the fact that this approach is relatively
easy to implement, some developers dislike doing this.

The main objection most developers have to displaying domain objects
in the view tier is that it violates layer encapsulation. This objection
stems from the idea that the various layers should know as little about
each other as possible to avoid tightly coupling the various layers,
which in turn encourages reuse.

8.7 Hibernate in the view layer
Licensed to Tricia Fu <tricia.fu@gmail.com>

Hibernate in the view layer 271
While we agree in principle, the reality is that you need some mecha-
nism to display object data to the user. You can either create another
tree of DTOs and the logic to populate them, or you can use your pre-
existing domain objects. Either way, the view has to know how to dis-
play something.

It might seem counterintuitive to claim that using domain objects to
display data is preferable to using a lightweight representation of your
data, but let’s consider an example.

Assume you have an Event object, with a Location and a collection of
Speakers. In your Hibernate mapping definition, you proxy the Loca-
tion class and set the collection to be lazy. Since Location is proxied, it
isn’t retrieved from the database until you access it. You want to dis-
play the Event instance to the user, but you only need to display the
Event and the collection of Speakers. The JSP snippet used to display
the relevant fields is shown here:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
Event Name: <c:out value="${event.name}"/>

Event Date: <c:out value="${event.date}"/>

Event Speakers:

<c:forEach var="speaker" items="${event.speakers}">
 Speaker Name: <c:out value="${speaker.firstName}"/>
 <c:out value="${speaker.lastName}"/>

</c:forEach>

This view is efficient because the collection of speakers is populated
only when you start iterating over it. The Location attribute is never
retrieved because you don’t access it in the view.

This method only works if you proxy persistent classes, use lazy collec-
tions, and keep the Hibernate Session instance in the view tier. Of
course, this approach may not work with your application require-
ments, but it’s important to realize that it’s available.
Licensed to Tricia Fu <tricia.fu@gmail.com>

272 CHAPTER 8 Web frameworks: WebWork, Struts, and Tapestry
Java web applications always seem to have a database somewhere in
the mix, which makes Hibernate an easy choice. In this chapter, you
created a single simple sample application, using three different J2EE
web frameworks: Struts, WebWork, and Tapestry. Looking over the
code, it becomes clear that the main difference between the three is in
the Presentation (sometimes called View or Web) layer. Using a good
reusable data access object and Service layer ensures that the only dif-
ferent parts between the applications are the controller and views.
Each framework has its own templating languages, tags, or compo-
nents that contain slight variations, but from Hibernate’s standpoint
there are only a few considerations you need to worry about:

1 How long do Hibernate sessions last, and are they available to the
view for lazy instantiation? In this chapter we opted for a very short
duration so the actions didn’t need to worry about managing Hiber-
nate sessions. In our experience, leaving a session open for a long
period of time is a recipe for trouble. Other developers on the project
(beside you) need to understand too much about how long sessions
are open to be productive. It’s better to have the controller completely
initialize all the objects for the view.

2 How do controllers get a handle on the SessionFactory? In this
chapter the EventDao uses a static field to store the SessionFactory,
but you can also store it in the ServletContext.

3 How much logic goes into the controller? It’s our general prefer-
ence to have very “thin” actions, so we opted to move all the Hiber-
nate query logic into the DAO, leaving only coordination and
presentation logic for the controller.

4 How reusable are controllers? This goes hand in hand with point 3.
Generally, we don’t favor reusing controllers, especially in a frame-
work like WebWork or Struts. Action chaining (reusing logic by
having an Action call another Action) is essentially programming in

8.8 Summary
XML (your config file), which we find cumbersome and hard to

Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 273
test. By moving logic into a Service layer, or Data Access layer, you
can program in Java, not XML.

5 When updating objects, do you use a query and update every
request, use detached objects in an HttpSession, or use long appli-
cation sessions? Our general preference for the sake of simplicity is
to use a query and update in a request. But this is still an open ques-
tion for the community, and one that Hibernate in Action (Manning,
2004) tackles in depth.

While we certainly could show you how to tightly couple your web
application to Hibernate and put Hibernate logic directly into a Web-
Work or Struts Action, we generally try to avoid that. If you are like
us, you work on lots of projects, with lots of different web frameworks,
so knowing a web framework to get the job done is a bit more useful.
Licensed to Tricia Fu <tricia.fu@gmail.com>

9
Hibernating with XDoclet

This chapter covers

• Understanding how XDoclet reduces duplication by generating
mapping files for you

• Making classes persistent by marking them with XDoclet tags

• Defining relationships, such as components and collections,
using XDoclet

Hibernating with XDoclet

n the examples we have demonstrated so far in this book, making a class
Hibernate-persistable requires at least two files for every class: the .java file and
an additional mapping file (.hbm.xml), which maps the class properties to the

associated columns in the database. It is, at best, a necessary evil, since it requires
a bit of duplication between the class and mapping file. The name of the class is
declared twice, as is every property. It would be nice if you could put at least some
of the mapping information right into the Java file itself. Unfortunately, Java 1.4
doesn’t provide any standardized way to do that.

Alternatively, you could use the .java file to generate the mapping file.
Considering that in our examples you have already been using the map-
ping file to automatically generate the SQL for the database, this seems to
be a pretty reasonable approach. You could write your Java class, then
automatically generate both .hbm.xml files and your database from it.
You would only need to maintain a single file, your Java class, and make

I

274

any subsequent changes only once.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Hibernating with XDoclet 275
By itself, Hibernate doesn’t provide any mechanism to generate the
mapping files. Instead, in this chapter we are going to use another open
source tool, XDoclet. As a generic code-generation tool, XDoclet can
be used to generate just about any type of file, including Hibernate
mapping files.

XDoclet uses a variation of the standard JavaDoc tool to read Java
source files and write out new files. When you insert special JavaDoc
tags into the .java source files, XDoclet can read those tags and gener-
ate the mapping file using that information. As a bonus, by adding
more comments to your Java file, you help document the Java classes
as well. This gives follow-on developers additional information about
the persistent relationships of your object model.

Chapter goals

This chapter is all about installing, configuring, and using XDoclet to
generate your mapping files. You will learn to

❂ Download and install XDoclet.
❂ Configure it using Ant so that it reads your persistent classes and

generates the mapping files for you.
❂ Mark up basic persistent Java files, thus allowing XDoclet to read

them.
❂ Create mappings for several complex Hibernate relationships, such

as collections and components, using XDoclet.

Assumptions

Building on previous chapters, you won’t be learning any new Hiber-
nate mappings, but you will learn how to write them differently. So we
assume that you understand how to do the following:

❂ Write basic persistent class mappings.
❂ Create mappings for common associations.
❂ Express collections and components in a mapping file.
Licensed to Tricia Fu <tricia.fu@gmail.com>

276 CHAPTER 9 Hibernating with XDoclet
XDoclet is an open source project with an Apache-style license, hosted
at sourceforge.net. By using it in conjunction with Hibernate, you can
avoid having to manually write mapping files. For example, having
written your Event.java, you would normally then have to write an
Event.hbm.xml file to define which Event fields are persistent and how
they map to database columns. Instead, if you add some special com-
ments to the Event.java file, XDoclet will write your Event.hbm.xml
file for you.

XDoclet is based on the JavaDoc tool, which is how all Java API doc-
umentation is generated. JavaDoc inspects the Java source files, and
then generates HTML documents that list the methods and fields of
the class, along with developer comments about them. It allows devel-
opers to keep documentation close to the code. XDoclet is used during
the build step, so it goes hand in hand with Ant. Adding XDoclet to the
build process allows you to compile your Java files and generate the
mapping files all in a single step.

This section will cover the basics of how JavaDoc works and how you
can add XDoclet tags to your persistent classes. It will also explain
how to install XDoclet and integrate it into your Ant build process.

9.1.1 JavaDoc basics

As mentioned earlier, XDoclet works by parsing Java source files,
using a modified version of JavaDoc. In case you aren’t familiar with
JavaDoc, it is a tool that comes with the basic JDK. It reads source
files, looking for specially formatted comments on classes and methods.
It then generates HTML documents that help developers understand
the API. Even if a developer doesn’t include comments, JavaDoc will
still give a detailed overview of the available public methods and fields.
Here’s a sample JavaDoc:

9.1 Essential XDoclet
Licensed to Tricia Fu <tricia.fu@gmail.com>

Essential XDoclet 277
package com.manning.hq.ch09;

/** Special ** multiline comment denotes this as a JavaDoc comment
 * A persistent Hibernate object.
 *
 * @author Patrick Peak This JavaDoc tag marks the author
 * @author Nick Heudecker
 */
public class Event implements Serializable {
}

Notice that this code contains a JavaDoc comment immediately before
the class declaration. In addition, it uses two *s instead of the typical
single *. This marks the comment as “special” for JavaDocs. A simple
comment follows that explains a bit about the class. Next are two
@author tags, which provide additional information to JavaDoc. In this
case, JavaDoc knows that there are two authors who worked on this
class and can generate the API documentation accordingly. JavaDoc
knows how to read a basic set of tags, including the @author tag, as well
as other class tags, such as @deprecated, @see, and @version. Method-
and field-specific tags are also available, such as @param, @throws, and
@return.

9.1.2 XDoclet: Building your own tags

XDoclet works by defining its own set of custom tags. More precisely,
each XDoclet module (of which there are quite a few) defines its own
set of tags. There are XDoclet modules for handling EJBs, Struts,
WebWork, JDO, and most importantly for our purposes, Hibernate.
Instead of generating HTML files for documentation purposes,
XDoclet can generate any sort of files, using a JSP-like template syn-
tax. The generated files can be HTML, XML, Java, C#, or whatever
the template author wants. The following uses the prebuilt Hibernate
templates to generate the mapping XML files for you:
Licensed to Tricia Fu <tricia.fu@gmail.com>

278 CHAPTER 9 Hibernating with XDoclet
/**
 * @hibernate.class table="events"
 */
public class Event implements Serializable {
 /**
 * This tag marks the primary key field
 * and column in database.
 * @hibernate.id generator-class="native" column="uid"
 */
 public Long getId() { return id; }
}

Here you see a Hibernate tag called @hibernate.class. This marks this
class as a Hibernate persistent class. Normally you would have to man-
ually write an Event.hbm.xml file. Instead, when XDoclet processes
this file, it will generate a basic Event.hbm.xml file for you. One of the
new things you see here is the table attribute. Typically, JavaDoc just
parses the text immediately after the tag. XDoclet needs more specific
information to work with, so tags can include attributes, such as the
table attribute you see here. This allows you to tell XDoclet what table
Event maps to. In fact, with just the previous lines of code XDoclet will
generate a file that looks like the one shown in listing 9.1.

Listing 9.1 Generated Event.hbm.xml

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <class
 name="com.manning.hq.ch09.Event"
 table="events"
 dynamic-update="false"
 dynamic-insert="false"
 >
 <id

Generates the
class name

Writes out the event
table attribute

Extracts the

 name="id" id property

Licensed to Tricia Fu <tricia.fu@gmail.com>

Essential XDoclet 279
 column="uid"
 type="java.lang.Long"
 >
 <generator class="native">
 </generator>
 </id>
 <!--
 To add non-XDoclet property mappings,
 create a file named hibernate-properties-Event.xml
 containing the additional properties and place it
 in your merge dir.
 -->
 </class>
</hibernate-mapping>

With two brief lines of XDoclet comments, you have generated an 18-
line file (excluding whitespace and comments). In addition, most of the
necessary class and field type information has been gathered from the
source file itself, without you having to specify it. The fully qualified
name of the class (com.manning.hq.ch09.Event) is included, as well as
the Long field id.

9.1.3 Installing XDoclet

Having covered some of the basic details of how XDoclet works, let’s
dig down a little deeper and work on some examples. You first have to
get a copy of XDoclet, so head to its home page at http://xdoclet.
sourceforge.net/xdoclet/index.html.

Choose the download/installation link from the left menu, and then
select the SourceForge download page. At the time of this writing, the
latest stable version is 1.2.3; support for Hibernate 3 has been added.
Select the bin version, which should be the most complete package; it
will be named something like xdoclet-bin-1.2.3.zip.

After getting a distribution, extract it to your applications directory.
When you’ve finished, take a look; the directory should be named
something like /applications/xdoclet-1.2.3. You should see at least three

Determines
correct field type
directories: docs, lib, and samples. The docs directory contains the

Licensed to Tricia Fu <tricia.fu@gmail.com>

280 CHAPTER 9 Hibernating with XDoclet
documentation for the project, which is mostly a duplicate of the web-
site, including the JavaDocs. The samples directory contains some
code samples of XDoclet in action. And finally, the lib directory con-
tains all the XDoclet JAR files and XDoclet’s dependencies. If you
want a complete list of all the XDoclet tags, check out the tag reference
by opening up docs/index.html and choosing the tag reference link for
Hibernate from the left menu.

That’s all there is to the install. In the next section, you’ll integrate
XDoclet into your Ant build file.

9.1.4 Configuring Ant

So far, we have glossed over the details of how XDoclet actually pro-
cesses the files. XDoclet works strictly at build time. In fact, the only
way to use XDoclet is as a part of an Ant build process. You’ll need to
create targets and tasks in your build.xml file to instruct it to process
the Java files and then generate the hbm.xml files. Go ahead and make
a copy of the build.xml file we have been working with in the previous
few chapters, this time naming it build09.xml. Modify it to look like so:

<project name="build09.xml" default="build">

 <property name="src.java.dir" value="src/java"/>
 <property name="build.classes.dir" value="build/classes"/>
 <!-- Other properties excluded -->
 <import file="hibernate-build.xml"/>
 <property name="xdoclet.version" value="1.2.3"/>
 <property name="xdoclet.lib.dir"
value="${applications.dir}/xdoclet-${xdoclet.version}"/>
 <path id="xdoclet.lib.path">
 <fileset dir="${xdoclet.lib.dir}\lib">
 <include name="**/*.jar"/>
 </fileset>
 </path>
 <path id="project.classpath">
 <pathelement location="${build.classes.dir}"/>
 </path>

Defines the location
where XDoclet is installed

Creates a path
element for
XDoclet
 <path id="runtime.classpath">
 <path refid="project.classpath"/>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Essential XDoclet 281
 <path refid="hibernate.lib.path"/>
 <path refid="xdoclet.lib.path"/>
 <pathelement location="${jdbc.driver.jar}"/>
 <pathelement location="${src.java.dir}"/>
 </path>
 <!-- Other attributes excluded -->
 <target name="generate-hbm" depends="compile">
 <taskdef
 name="hibernatedoclet"
 classname="xdoclet.modules.hibernate.HibernateDocletTask"
 classpathref="runtime.classpath"
 />
 <hibernatedoclet
 destdir="${build.classes.dir}"
 verbose="true">
 <fileset dir="${src.java.dir}">
 <include name="**/*.java"/>
 </fileset>
 <hibernate version="3.0"/>
 </hibernatedoclet>
 </target>
</project>

 (We left out a few of the attributes and tasks from the overall build file
to highlight the new additions.) Overall, you do quite a few things with
this code. You add XDoclet to the classpath by defining the location
where you installed it. By making the xdoclet.version a property, you
make it easy to upgrade to a new version. You define a path element,
xdoclet.lib.path, which includes all the XDoclet JARs and depen-
dencies. Finally, you define a new Ant task, called hibernatedoclet,
which will be used to generate the .hbm files. Running this task from
the command line yields the following:

$ant –f build09.xml generate-hbm
Buildfile: build09.xml

init:

compile:

Adds XDoclet to
the classpath

Defines the Hibernate
Doclet task

Specifies the output
directory for the
.hbm.xml files

Contains location of
the Java files, parsing
all of them
generate-hbm:

Licensed to Tricia Fu <tricia.fu@gmail.com>

282 CHAPTER 9 Hibernating with XDoclet
[hibernatedoclet](XDocletMain.start 47) Running <hibernate/>
[hibernatedoclet] Generating mapping file
 for com.manning.hq.ch09.Event.
[hibernatedoclet] com.manning.hq.ch09.Event

BUILD SUCCESSFUL
Total time: 4 seconds

As you notice, the task processed a single Java class, your Event class,
and generates its mapping file. If you look in the build/classes direc-
tory, you should find an Event.hbm.xml file sitting along with the com-
piled Event.class. You can add Event to your SessionFactory now and
persist classes just as if you wrote the Event.hbm.xml file by hand. And
as you can see by looking at Event.java, the Hibernate tags you added
make the purpose and intent of the class a bit clearer. So you have
reduced the number of files that future developers (which may include
you) need to read and comprehend, as well as documenting the files
they do read.

So far we have covered a basic example of how XDoclet works. Let’s
take a step back and look at what mapping elements Hibernate
requires to make a class persistent. Generally, each Hibernate element
has a corresponding XDoclet tag that generates it. This section covers
four of the basic tags you need to make a single class persistent: @class,
@id, @property, and @column.

Each of these tags has its own set of allowable properties, which you’ll
likely need to configure; some of them have very reasonable defaults.
What follows is not an exhaustive list but just a listing of properties
that you may need to use. For complete tag details, check the documen-
tation that comes with XDoclet.1

9.2 Making single objects persistent
1 The Hibernate tag documentation is in that docs directory we pointed out in section 9.1.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Making single objects persistent 283
9.2.1 The @hibernate.class tag

The @hibernate.class tag has quite a few properties (many of which
you will use when we start discussing polymorphism and subclasses),
but table 9.1 shows the one that’s commonly used.

Tags are valid only when placed in certain spots. In this case, you put
this tag only in the class-level JavaDoc comments. It would be mean-
ingless to put it on a method, for example. Note that while the table
attribute isn’t mandatory, we also recommend specifying it for the
sake of clarity (and because database and Java naming conventions
differ a bit).

Also, for the class-based tags, be sure the JavaDoc comments are right
before the class declaration. If you put a class-based tag in the wrong
place, XDoclet will silently do nothing and leave you frustrated and
confused. For example, don’t do this:

/**
 * Don't do this! Class tags can't appear before the
 * package statement.
 * @hibernate.class
 */
package com.manning.hq.ch09;

public class Event implements Serializable { }

Many classes have a big block of comments appear at the beginning of
the file, which is fine. But if you want XDoclet to parse them, be sure
to put the JavaDoc right up next to the class declaration like so:

Table 9.1 A common @hibernate.class attribute

Attribute Description Default

table Contains the name of the
table where instances of this
class will be persisted to.

The unqualified name of the
class.
Licensed to Tricia Fu <tricia.fu@gmail.com>

284 CHAPTER 9 Hibernating with XDoclet
/*
 * Some other comments about the Event class go here.
 */
package com.manning.hq.ch09;
/**
 * This is the right place. XDoclet looks for
 * class-level tags here.
 * @hibernate.class
 */
public class Event implements Serializable { }

9.2.2 The @hibernate.id tag

Table 9.2 list the common properties of the @hibernate.id tag.

Table 9.2 Common @hibernate.id attributes

Attribute Description Default

generator-class Contains the key genera-
tor that Hibernate will use
to insert new instances.

None. It’s mandatory so you
have to pick one. When in
doubt, using native will work
for most databases.

type Specifies the Hibernate
type for this field.

The return type of the field; as
primary keys tend to be Longs
or Strings, it usually isn’t nec-
essary to specify this.

column Contains the name of the
column.

The property name.

unsaved-value Contains a value that will
distinguish transient
instances from persis-
tent ones.

Null. Generally, if you use a
String or Long as the primary
key, you don’t need to specify
this.

length Specifies the size of the
database column.

The default size for the field
type. For a Long, it’s a given,
but for a String key, you
might need to specify it.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Making single objects persistent 285
That’s actually all of the properties you can specify for the id field.
Generally, unless you are doing something fairly complex, you just
need the generator-class and possibly the column field.2 The @hiber-
nate.id tag is a property-level tag, so it only goes along with a prop-
erty, not with a class.

You need to keep in mind a few tricky things about property-based
tags. For example, you have to mark the getter method, not the field
itself or the setter methods. The following is wrong:

/**
 * Wrong! Don't put on the field.
 * @hibernate.id generator-class="native" column="uid"
 */
private Long id;

/**
 * Wrong! Don't put on the setter method either.
 * @hibernate.id generator-class="native" column="uid"
 */
public void setId(Long id) {
 this.id = id;
}

This is the correct place to put it: on the getId() method.

/**
 * The right place for the tag, on getter method.
 * @hibernate.id generator-class="native" column="uid"
 */
public Long getId() {
 return id;
}

2 Most property-based tags (including both property and id) will have a column attribute,
which is usually optional. We think it’s good practice to specify it, though, since it makes

columns obvious in the class documentation.

Licensed to Tricia Fu <tricia.fu@gmail.com>

286 CHAPTER 9 Hibernating with XDoclet
Another aspect that might be confusing is unsaved-value.

unsaved-value

The issue we’ll discuss next isn’t related just to XDoclet, but is a more
general Hibernate one. We discussed this issue earlier in chapter 3, but
a quick review might be in order. When Hibernate goes to save an
object, it looks at the value of the identifier field to determine whether
the object is new (transient) and needs to be inserted or whether it is
persistent. If a transient object is passed to saveOrUpdate(), a new row
is created. If the identifier is anything else, an update for the matching
row is performed.

For most persistent classes, if the identifier is an object, such as a Long
or a String, the default unsaved-value of null is fine. This is the case
with your Event, which has an id field that’s a Long, so you don’t need
to specify a value for unsaved-value. So the following would create a
new Event row in the database:

Event event = new Event();
session.saveOrUpdate(event);

So when you create a new Event, its id is null to start and thus will be
inserted. If you are using a primitive for a key (like long or int), you
should set the unsaved-value attribute to 0. So if you changed your
Event.id field to be a long, you’d have to specify the unsaved-value
field like this:

/**
 * Using a primitive long instead of a Long to
 * demonstrate unsaved-value.
 * @hibernate.id generator-class="native"
 * column="uid" unsaved-value="0"
 */
public long getId() {
 return id;
}

Licensed to Tricia Fu <tricia.fu@gmail.com>

Making single objects persistent 287
9.2.3 The @hibernate.property tag

Now let’s look at a new tag, @hibernate.property. You will use this tag
quite a bit. It is a direct replacement for the Hibernate <property> ele-
ment and has most of the same attributes you see there. Like the
@hibernate.id tag, it has to go on the getter, not on the field. Table 9.3
contains the most commonly used tag attributes.

Its attributes are not much different from those of @hibernate.id. The
important ones @hibernate.property adds are the not-null and unique
column constraints, which are also present by default for an id/primary
key column. With that in mind, you can expand on the Event example
and put some of the properties you left out earlier back in using
XDoclet (see listing 9.2).

Listing 9.2 Event with @hibernate.property tags

package com.manning.hq.ch09;

import java.io.Serializable;
import java.util.Date;

Table 9.3 Common @hibernate.property attributes

Attribute Description Default

column Contains the name of the col-
umn this property maps to.

The name of the field.

length Specifies the column size. The default length for a field
(i.e., 11 for Longs, 255 for
Strings).

not-null Specifies that a not-null con-
straint should be enforced.

false.

unique Specifies that a unique con-
straint should be enforced.

false.

type Specifies the Hibernate type. If you don’t specify the type
attribute, XDoclet makes an
educated guess based on the
return type of the field.
Licensed to Tricia Fu <tricia.fu@gmail.com>

288 CHAPTER 9 Hibernating with XDoclet
public class Event implements Serializable {
 private Long id;
 private int duration;
 private String name;
 private Date startDate;

 /**
 * @hibernate.id generator-class="native" column="uid"
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 /**
 * @hibernate.property column="name"
 */
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 /**
 * @hibernate.property column="start_date"
 */
 public Date getStartDate() { return startDate; }
 public void setStartDate(Date startDate) {
 this.startDate = startDate;
 }

 /**
 * @hibernate.property column="duration"
 */
 public int getDuration() { return duration; }
 public void setDuration(int duration) {
 this.duration = duration;
 }
}

We have added three properties, of differing types: a String, a Date,
and an int property. XDoclet will parse this file and correctly create
the mapping document we have seen in previous chapters. Rerunning
the generate-hbm target in Ant should regenerate the Event.hbm.xml
file with the following additions:
Licensed to Tricia Fu <tricia.fu@gmail.com>

Making single objects persistent 289
<property
 name="name"
 type="java.lang.String"
 update="true"
 insert="true"
 access="property"
 column="name"
/>

<property
 name="startDate"
 type="java.util.Date"
 update="true"
 insert="true"
 access="property"
 column="start_date"
/>

<property
 name="duration"
 type="int"
 update="true"
 insert="true"
 access="property"
 column="duration"
/>

Working in an iterative fashion, you can see how easy it is to add prop-
erties to an existing persistent object in this way. Add the new field to
the class, mark it with XDoclet tags, generate the mapping files, and
then run the SchemaUpdate or SchemaExport task to add the new col-
umns to the database.

9.2.4 The @hibernate.column tag

Making a field a simple Hibernate property in most cases only requires
the services of the @hibernate.property tag. However, at times more
information is needed, and this is where the @hibernate.column tag
comes in handy. Its purpose is to allow you to provide additional
Licensed to Tricia Fu <tricia.fu@gmail.com>

290 CHAPTER 9 Hibernating with XDoclet
information about the database column mapping. It is also the first
example we have considered where you can use two Hibernate tags on
a single field. We will see more examples of this later, in section 9.4,
when we cover collections. Table 9.4 contains the most common
attributes in the @hibernate.column tag.

Looking at tables 9.3 and 9.4, you can see some duplication of
attributes between the @hibernate.property and @hibernate.column
tags, especially considering that they will be used together for a single
field. It’s because the column tag is intended to be an overriding, more
specific version of the property tag. Information from the column tag is
used to create a nested <column> element inside the property tag.

The question you might be asking yourself now is, “Why would I want
to use this; @hibernate.property seems to have all I need?” Take, for

Table 9.4 Common @hibernate.column attributes

Attribute Description Default

name Contains the name of column
this property maps to.

It’s mandatory, so no default.

length Specifies the column size. The default length for a field
(i.e., 11 for Longs, 255 for
Strings) or the size implied
by sql-type.

not-null Specifies that a not-null con-
straint should be enforced.

false.

unique Specifies that a unique con-
straint should be enforced.

false.

index Contains the name of a table
index for this column.

No named index created.

unique-key Creates a uniquely named
constraint with this name.

No constraint created.

sql-type Specifies a database-specific
column type, like TEXT or
LONGBLOB.

The type implied by the
length.
example, the case of the humble java.lang.String. In Java, a String

Licensed to Tricia Fu <tricia.fu@gmail.com>

Making single objects persistent 291
can be as big or as small as needed. A developer doesn’t have to
choose between a String256, a StringBig, or a StringTiny—there’s a
one-size-fits-all String. The world of the database isn’t so simple. You
have to declare columns to be of a specific size ahead of time. If you
create a VARCHAR(255) column and then attempt to stuff a 1,055-char-
acter college essay into it, hopefully you still have the original since the
database is probably going to truncate everything after its size limit
has been reached.3

In our example, you want to specify the Event’s name to be really long.
In MySQL terms, you want it to be a TEXT column type. You could
do one of two things: declare the length of the property to be 65535
(which happens to be the exact size of the column), or use a @hiber-
nate.column with a sql-type="TEXT". The first approach is workable
and likely to be more database portable. The second is a lot easier to
remember and read.4 Let’s give the second strategy a try. Go ahead and
modify the getName() method on the Event class:

/**
 * @hibernate.property
 * @hibernate.column name="name" sql-type="TEXT"
 * @return
 */
public String getName() { return name; }

Here you’ve removed the column attribute from the property tag and
specified it in the column tag. Now when you regenerate the hbm.xml
files, you should see the following altered version of the name property:

3 The database’s behavior when you try to fit too much data into a column that is too small to
hold it all is specific to that database. MySQL truncates; other databases are free to do dif-
ferent things.

4 If database portability becomes a concern here, you can also use Ant property substitution,
detailed in section 9.5. It allows you to regenerate the hbm.xml files for different databases

fairly easily.

Licensed to Tricia Fu <tricia.fu@gmail.com>

292 CHAPTER 9 Hibernating with XDoclet
<property
 name="name"
 type="java.lang.String"
 update="true"
 insert="true"
 access="property"
>
 <column
 name="name"
 sql-type="TEXT"
 />
</property>

That’s all there is to it. While this might seem to be an unusual case, the
approach is extremely handy when you are using SchemaExport to gen-
erate the database, since the newly created columns will be the right
size. If you run this against a MySQL database, it will create the name
column as type TEXT rather than the often-too-short default VARCHAR
size of 255.

Having covered the basics of generating a single persistent class map-
ping file, with its properties, let’s next examine how basic relationships
can be generated. The two basic relationships we have seen before,
many-to-one and components, can be generated by XDoclet using the
two new tags we’ll cover next: @hibernate.many-to-one and @hiber-
nate.component.

9.3.1 The @hibernate.many-to-one tag

The many-to-one relationship works essentially like the property tag,
except that it stores a foreign key to another table, as opposed to a
single column property value. As such, it shares many of the same

9.3 Basic relationships
Licensed to Tricia Fu <tricia.fu@gmail.com>

Basic relationships 293
attributes as the @hibernate.property tag. Table 9.5 contains some of
the common ones.

In most cases, only cascade and column need to be specified. As an
example, let’s add the many-to-one relationship between Event and
Location using the @hibernate.many-to-one tag. First, add the follow-
ing to the Event class:

public class Event implements Serializable {
 private Location location;
 /**
 * @hibernate.many-to-one column="location_id"
 * cascade="save-update"
 */
 public Location getLocation() { return location; }
 public void setLocation(Location location) {
 this.location = location;
 }
}

Table 9.5 Common @hibernate.many-to-one attributes

Attribute Description Default

column Contains the name of
column in the database.

The name of the field.

class Contains the associated
persistent class.

The class of the field.
Usually XDoclet can
guess this so it’s not
necessary to specify.

cascade Specifies how cascad-
ing operations should
be handled from parent
to child.

None. Acceptable values
include all, none, save-
update, or delete.

unique Specifies that a unique
constraint should be
enforced.

false.

not-null Specifies that a not-null
constraint should be
enforced.

false.
Licensed to Tricia Fu <tricia.fu@gmail.com>

294 CHAPTER 9 Hibernating with XDoclet
Here you see @hibernate.many-to-one in action. You’ve mapped the
location field to a location_id column in the events table. XDoclet
will extract the correct class, in this case com.manning.hq.Location, by
looking at the return type of the getLocation() method. The next step
is to make sure that Location itself has a mapping file, which you can
generate via XDoclet as well:

package com.manning.hq.ch09;

import java.io.Serializable;
/**
 * @hibernate.class table="locations"
 */
public class Location implements Serializable{
 private Long id;

 /**
 * @hibernate.id generator-class="native" column="uid"
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

}

There’s nothing really new here; you’ve just defined the Location
object with an id field. Now when you run the generate-hbm task via
Ant, XDoclet adds the following to the Event.hbm.xml file:

<many-to-one
 name="location"
 class="com.manning.hq.ch09.Location"
 cascade="save-update"
 outer-join="auto"
 update="true"
 insert="true"
 access="property"
 column="location_id"
/>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Basic relationships 295
A complete many-to-one element has been added to the Event.hbm.xml
file. In addition, you may notice the previous code has a few attributes
that you might not be familiar with. Check the Hibernate manual and
XDoclet manuals for more information.

9.3.2 The @hibernate.component tag

The next basic relationship we want to cover involves components. As
you might remember, components are not full-blown entities, like
Event or Location, but are just simple value objects whose values are
stored in the same table as their parent objects. XDoclet can be used to
mark both the component object itself (where the field-to-column map-
ping must be done) and the component field on the entity object. We’ll
use the example from chapter 4, where our Location object had an
Address component. When XDoclet parses the Java files, it will com-
bine the information from the Address class and Location class into a
single Location.hbm.xml. Remember that since Address is a compo-
nent, it doesn’t need its own Address.hbm.xml file.

Using a single component

Generating the mapping files for a component isn’t much different than
what you’ve seen. You add @hibernate.property tags to the fields of
the component object, but you don’t need to declare a @hiber-
nate.class tag on the component. The parent class then uses the
@hibernate.component tag to pull the information from the component
object. It’s a simple tag, with only a few attributes, as table 9.6 shows.

Table 9.6 @hibernate.component attributes

Attribute Description Default

class Contains the fully-qualified
class name of the component.

The return type of the getter
method (XDoclet can usually
guess).

prefix Contains a column prefix that
allows multiple components
of the same type on a single
entity.

No prefix, which is fine when
only one component exists
per class.
Licensed to Tricia Fu <tricia.fu@gmail.com>

296 CHAPTER 9 Hibernating with XDoclet
For the simplest cases, neither attribute needs to be specified. XDoclet
can usually guess the name of the class, so you don’t have to include
class. The prefix attribute is only used when you need multiple com-
ponents of the same type. We look at this prefix in the short section
that follows.

Let’s put the @hibernate.component tag into motion by marking up our
component, the Address object (see listing 9.3).

Listing 9.3 An Address component, XDoclet-style

package com.manning.hq.ch09;
import java.io.Serializable;

/** An Address component, it does not have its own identity */
public class Address implements Serializable {
 private String streetAddress;
 private String city;
 // Other properties omitted

 /**
 * @hibernate.property column="street_address"
 */
 public String getStreetAddress() { return streetAddress; }
 public void setStreetAddress(String streetAddress) {
 this.streetAddress = streetAddress;
 }

 /**
 * @hibernate.property column="city"
 */
 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }

 // Other getter/setter methods omitted
}

As you can see, we have marked the properties as persistent, but there
is no @hibernate.class tag that would mark it as a persistent entity.
Next, add the following to the Location class you created earlier in

this chapter:

Licensed to Tricia Fu <tricia.fu@gmail.com>

Basic relationships 297
public class Location implements Serializable{
 // Other properties omitted
 private Address address = new Address();

 // Other getter/setters methods omitted

 /**
 * @hibernate.component
 */
 public Address getAddress() { return address; }
 public void setAddress(Address address) {
 this.address = address;
 }
}

The Address component is declared, almost as if it were a many-to-one
relationship. Rerun the Ant generate-hbm target and check out the
Location.hbm.xml file. Look for the Address component and you
should see the following fragment:

<component
 name="address"
 class="com.manning.hq.ch09.Address"
>
<property
 name="streetAddress"
 type="java.lang.String"
 update="true"
 insert="true"
 access="property"
 column="street_address"
/>

<property
 name="city"
 type="java.lang.String"
 update="true"
 insert="true"
 access="property"

 column="city"

Licensed to Tricia Fu <tricia.fu@gmail.com>

298 CHAPTER 9 Hibernating with XDoclet
/>

<!-- Other properties omitted -->
</component>

This fragment shows that XDoclet has combined the property informa-
tion from Address and the component declaration from Location into a
single Location.hbm.xml mapping file. For an investment of three lines
of documentation, we get an approximately 18-line return (excluding
whitespace), so how’s that for ROI? And consider the time savings if
three or four classes used this component. Each one would only need to
declare the @hibernate.component tag and would have all the same
property information generated.

Multiples components on a single class

One of the things you may have noticed from the previous example is
that the column information is stored in the Address object rather than
the Location object. What if your Location needed two address fields,
perhaps a mailingAddress and a billingAddress? You clearly can’t
have two city columns in a table, so do you have to resort to the hassle
of handwriting the mapping file? Nope. Fortunately, XDoclet provides
the prefix attribute, which allows you to prefix the column names eas-
ily, allowing mailing and billing addresses to coexist peacefully along-
side each other on a single Location. Modify the Location class to add
the following changes:

public class Location implements Serializable{
 // Other properties omitted
 // Renamed from address to mailingAddress
 private Address mailingAddress = new Address();
 // Added second component, the billingAddress property
 private Address billingAddress = new Address();
 // Other getter/setter methods omitted.
 /**
 * @hibernate.component prefix="mailing_"
 */

 public Address getMailingAddress() { return mailingAddress; }
 public void setMailingAddress(Address mailingAddress) {

Licensed to Tricia Fu <tricia.fu@gmail.com>

Basic relationships 299
this.mailingAddress = mailingAddress;}

 /**
 * @hibernate.component prefix="billing_"
 */
 public Address getBillingAddress() { return billingAddress; }
 public void setBillingAddress(Address billingAddress) {
this.billingAddress = billingAddress; }
}

In this code, you rename one of the properties (address becomes
mailingAddress) and add a second property, billingAddress, and
then declare prefixes on both of these. Rerunning the Ant generate-
hbm target adjusts the Location.hbm.xml with the fragment below.
Note that the whitespace has been rearranged a bit.

<component name="mailingAddress"
 class="com.manning.hq.ch09.Address" >
 <property
 name="streetAddress"
 type="java.lang.String"
 update="true"
 insert="true"
 access="property">
 <column name="mailing_street_address"/>
 </property>
<!-- Other properties omitted. -->
</component>

<component name="billingAddress"
 class="com.manning.hq.ch09.Address">
<property
 name="streetAddress"
 type="java.lang.String"
 update="true"
 insert="true"
 access="property">
<column name="billing_street_address"/>
</property>
<!—Other properties omitted -->
</component>
Licensed to Tricia Fu <tricia.fu@gmail.com>

300 CHAPTER 9 Hibernating with XDoclet
There is only one trick to getting this to work, which even caught this
author off guard at first. (This trick has only been well documented in
the latest 1.2.3 version of XDoclet.) You have to modify the Address
class to use @hibernate.column tags, in addition to the @hiber-

nate.property tags. Doing this allows XDoclet to prepend the prefix
to each column. So looking at the Address class, take this:

/**
 * @hibernate.property column="street_address"
 */
public String getStreetAddress() { return streetAddress; }

and change it into this:

/**
 * @hibernate.property
 * @hibernate.column name="street_address"
 */
public String getStreetAddress() { return streetAddress; }

These two mappings are functionally the same, but only the second one
allows multiple identical components for XDoclet to work.

After discussing XDoclet’s ability to generate persistent entities and
basic relationships, the only major remaining piece of the puzzle to dis-
cuss is collections. The bulk of the XDoclet tags are devoted to han-
dling collections. They are the most complicated of the relationships,
and numerous variations exist. As varied as they are, the basic uses
between a one-to-many set, a many-to-many list, and a map of compo-
nents are all fairly similar. So here we are going to cover a simple case
and leave the specifics of each association to the appendix.

9.4 Building collections
Licensed to Tricia Fu <tricia.fu@gmail.com>

Building collections 301
9.4.1 One-to-many: a kicking set of Speakers

Our next example is a remake of the original Event and Speaker exam-
ple from chapter 5. Recall that an Event has a one-to-many relationship
with Speakers, stored as a Set property on Event. To build a collection
with XDoclet, you can’t just use a single tag, as we did with the
@hibernate.id and @hibernate.many-to-one tags. Instead, you have to
use multiple cooperating tags, such as the @hibernate.property and
@hibernate.column tags. One of the things that makes XDoclet genera-
tion difficult is knowing which tags to use together, something that the
XDoclet tag reference documentation doesn’t currently make clear.
Typically you will need at least three tags, one for each nested element
and one for the collection element. The net result is something that is
easier to demonstrate than it is to explain, so let’s demonstrate first.
Modify the Event class as shown in listing 9.4 to give it a set of Speakers
and the corresponding XDoclet tags.

Listing 9.4 Event with a set of Speakers

import java.util.LinkedHashSet;
import java.util.Set;

/**
 * @hibernate.class table="events"
 */
public class Event implements Serializable {
 // Other properties omitted.
 private Set speakers = new LinkedHashSet();

 // Other getter/setters omitted.

 /**
 * @hibernate.set cascade="save-update"
 * @hibernate.collection-key column="event_id"
 * @hibernate.collection-one-to-many
 class="com.manning.hq.ch09.Speaker"
 */
 public Set getSpeakers() { return speakers; }
 public void setSpeakers(Set speakers) {
 this.speakers = speakers; }
}

Declares the
collection type

Declares the
foreign key
from Speaker
to Event

Declares the collection a one-
to-many along with the class
Licensed to Tricia Fu <tricia.fu@gmail.com>

302 CHAPTER 9 Hibernating with XDoclet
Needing three tags to generate the mapping for just one property may
seem a bit overwhelming. This code tells XDoclet that the collection is
a Set, which column on the Speaker object is the foreign key back to
Event, and that it’s a one-to-many (as opposed to a many-to-many) rela-
tionship between Events and Speakers. XDoclet cannot inspect the code
to determine what class of object the speaker’s collection holds, so you
must explicitly tell it that it holds a set of com.manning.hq.ch09.Speaker
instances. If you rerun the Ant generate-hbm task, the task will add the
following fragment to the Event.hbm.xml file:

<set name="speakers"
 lazy="false"
 inverse="false"
 cascade="save-update"
 sort="unsorted" >
 <key column="event_id" ></key>
<one-to-many ="com.manning.hq.ch09.Speaker" />
</set>

Here the method to XDoclet’s madness is made clear. The Rule of
XDoclet collections is: To generate collections, every element requires
a single XDoclet tag. If you know what the end resulting mapping frag-
ment looks like, you should be able to reasonably determine which tags
you need to generate it. For our previous example you needed three ele-
ments, as shown in table 9.7, which offers a line-by-line comparison.

Given the comparison in table 9.7, what tag do you think you would
need if you wanted to change the Speaker to Event one-to-many

Table 9.7 Matching Hibernate mapping elements to XDoclet tags

Mapping Element XDoclet Tag

<set /> @hibernate.set

A nested <key /> @hibernate.collection-key

A nested <one-to-many /> @hibernate.collection-one-to-many
Licensed to Tricia Fu <tricia.fu@gmail.com>

Building collections 303
relationship into a many-to-many relationship? Assume that the end
result is an element like this:

<set name="speakers" table="as_event_to_speaker">
 <key column="event_id" ></key>
 <many-to-many class="com.manning.hq.ch09.Speaker"

 column="speaker_id" />
</set>

If you guessed @hibernate.collection-many-to-many, you’d be abso-
lutely correct. And the prize is that you don’t need to scour the
XDoclet tag reference using trial and error to guess which one you
need to use.5

9.4.2 The @hibernate.set tag

Having seen the @hibernate.set tag in action, let’s step back and take
a look at its common attributes. Since a set supports both many-to-
many and one-to-many, some of the attributes are used for each of
those cases, as table 9.8 shows.

5 Unfortunately, the trial-and-error guessing game of which tag matches which element isn’t a
particular fun one for us anyway. This is one of the reasons why we created the appendix,

Table 9.8 Common @hibernate.set attributes

Attribute Description Default

cascade Specifies how cascading oper-
ations should be handled from
parent to child.

None. Acceptable values
include all, none, save-
update, all-delete-orphan,
and delete.

table For the many-to-many associa-
tion only, contains the associ-
ation table name for joins.

For a many-to-many, it uses
the name of the field.
which is called “The complete Hibernate mapping catalog.”

Licensed to Tricia Fu <tricia.fu@gmail.com>

304 CHAPTER 9 Hibernating with XDoclet
The simplest cases of one-to-many relationships will not likely need
any attributes. You can add sorting, ordering, or laziness as your
domain model dictates. The @hibernate.set tag is not the only collec-
tion type allowed; alternatively, @hibernate.array, @hibernate.prim-
itive-array, @hibernate.bag, @hibernate.list, and @hibernate.map
are possible top-level tags as well. In addition, the @hibernate.set
tag needs the support of two more tags: @hibernate.collection-key
and @hibernate.collection-one-to-many (or @hibernate.collection-
many-to-many).

9.4.3 The @hibernate.collection-key

All of the collections require the use of the <key> element. Otherwise,
there is no foreign key to trace back from the individual object to the
parent object. Therefore, a @hibernate.collection-key tag is neces-
sary as well. It has only one attribute, as you can see in table 9.9.

lazy Specifies whether the collec-
tion should be lazily initial-
ized.

false.

sort Specifies whether the collec-
tion should be sorted in mem-
ory. Allows values are
unsorted, natural, or the fully
qualified class name of a
java.util.Comparator.

Collection is not sorted.

order-by Specifies whether the query to
fetch the collection should add
a SQL ORDER BY clause. Allow-
able syntax is column_name
asc | desc.

No ORDER BY added. Note that
it’s a column name, not a
property name.

inverse Specifies whether the collec-
tion is inverse (determines
which end of the collection is
the parent).

false.

Table 9.8 Common @hibernate.set attributes (continued)

Attribute Description Default
Licensed to Tricia Fu <tricia.fu@gmail.com>

Building collections 305
One thing might be confusing about this: when dealing with a many-to-
many relationship, which foreign key column is which? The <key> ele-
ment/@hibernate.collection-key tag/key column is always on object
in the collection. The way we like to remember it is that the <key> is
named after the parent object. So on our example Event class, the <key>
looks like this:

<!--This is right. Name the key column after the parent object -->
<key column="event_id"/>

and not like this:

<!-- Wrong! Don't name keys after the collection -->
<key column="speaker_id"/>

9.4.4 The @hibernate.collection-one-to-many tag

The @hibernate.collection-one-to-many and the @hibernate.collec-
tion-many-to-many tags are mutually exclusive because a single collec-
tion can only be one or the other. This section details the syntax
associated with one-to-many. The many-to-many tag is functionally
similar; you can find details about it in the appendix. This simple tag
has one attribute, as table 9.10 shows.

Be sure to spell the name of the class correctly; XDoclet won’t warn
you of a ClassNotFoundException during the generation process. A
spelling error appears only at runtime (or unit-test time, whichever
comes first).

Table 9.9 @hibernate.collection-key attribute

Attribute Description Default

column Contains the name of the for-
eign key column on the object
in the collection.

No default; it’s mandatory.
Licensed to Tricia Fu <tricia.fu@gmail.com>

306 CHAPTER 9 Hibernating with XDoclet
As you may have guessed, most Hibernate relationships can be gener-
ated with XDoclet—but certainly not all. As a dynamic open source
project, Hibernate is a moving target. New features are added fre-
quently. XDoclet is a separate project from Hibernate, maintained by a
separate group of developers, so the features it supports will inevitably
lag behind by a bit.

This section covers the way in which you can work around or handle
Hibernate mappings that XDoclet won’t completely handle. Any code-
generation tool has a few scenarios that it isn’t fully prepared to cover;
obviously, the developers can’t code for every possible situation. A
good tool like XDoclet provides a number of workaround routes that
you can use. Here are a couple of strategies to use with XDoclet if
somehow it won’t generate what you need:

❂ Merge points
❂ Ant property substitution

Which approach you should use depends mainly on the situation and
how close the generated files are to what you want them to be. Let’s
look at each strategy in turn.

9.5.1 Merge points

Perhaps a new version of Hibernate is released that defines a new
property mapping that XDoclet doesn’t support yet. You don’t want to

Table 9.10 @hibernate.collection-one-to-many attribute

Attribute Description Default

class Contains the fully qualified
name of the class in the col-
lection.

No default. Though not offi-
cially mandatory, since
XDoclet can’t guess and leaves
it blank, you need to specify
the class name.

9.5 Going where no XDoclet has gone before
handwrite the entire .hbm.xml file—just the single property. The most

Licensed to Tricia Fu <tricia.fu@gmail.com>

Going where no XDoclet has gone before 307
common solution for this problem is to use XDoclet’s built-in merge
feature. Since you shouldn’t hand-edit actively generated code,6

XDoclet lets you inject handwritten code into the final actively gener-
ated file. XDoclet refers to these as merge points. The Hibernate mod-
ule supports injecting handwritten XML configuration into each
hbm.xml file. If you look at the generated Event.hbm.xml file, you
should see a helpful comment that looks like this:

<!-- To add non XDoclet property mappings, create a file named
hibernate-properties-Event.xml containing the additional
properties and place it in your merge dir. -->

This tells you that if you write a file called hibernate-properties-
Event.xml and put it in the magical merge directory, XDoclet will
insert it in the finished Event.hbm.xml file. Suppose, for example, you
didn’t have access to the Address object. You cannot insert XDoclet
tags to nicely generate the component mapping. Instead, you have to
include a handwritten component mapping and merge it into the Loca-
tion.hbm.xml file.

Create a directory named /work/calendar/src/xdt. This will be your
merge directory, where your handwritten merge files will go. Then cre-
ate a file called hibernate-properties-Location.xml in the merge direc-
tory. One tricky thing is that the directory structure where the merge
file is needs to match the package structure of the class. In this case,
create a directory structure that looks like /work/calendar/src/xdt/com/
manning/hq/ch09. The hibernate-properties-Location.xml file goes in
that directory. Here’s what the file should contain:

6 Actively generated code can be automatically regenerated at any time and therefore should
not be hand-edited since changes will be lost. This is opposed to passively generated code,
which is generated once, and then modified, edited, and checked into source control like any

source file would be. All the examples from this chapter have featured active generation.

Licensed to Tricia Fu <tricia.fu@gmail.com>

308 CHAPTER 9 Hibernating with XDoclet
<component name="address" class="com.manning.hq.ch09.Address" >
 <property name="streetAddress"
 type="java.lang.String"
 column="street_address" />
 <!-- Other properties omitted -->
</component>

Next, you need to modify the hibernatedoclet task in Ant so that it
knows where the merge directory is. Make the following modification
to the build9.xml file:

<hibernatedoclet
 destdir="${build.classes.dir}"
 verbose="true"
 mergeDir="src/xdt">

This tells XDoclet to use the relative directory of src/xdt as the merge
directory. Finally, since you do actually have control over the Address
source file, you want to modify Location’s address property. Other-
wise, you would have two properties generated, one by XDoclet and
one from the merge file. Modify the getAddress() method and remove
the @hibernate.component tag as shown here:

/**
 * Mapping handled by hibernate-properties-Location.xml
 */
public Address getAddress() { return address; }

At this point, rerun the generate-hbm task. Inspect the Loca-
tion.hbm.xml file and you should see that the component fragment has
been inserted, and the merge comment will be gone.

9.5.2 Property substitution

The primary way Ant can be customized for different deployment envi-
ronments is by the use of properties. XDoclet builds on this by allow-

ing the use of Ant properties inside an XDoclet tag. Suppose you want

Licensed to Tricia Fu <tricia.fu@gmail.com>

Going where no XDoclet has gone before 309
to customize the key-generation algorithm for different database
deployments. In one case, you want to use hilo, and in another, iden-
tity. You’ll need two targets in your Ant build.xml, one for each envi-
ronment that sets the property accordingly:

<target name="generate-identity">
 <property name="hibernate.id.value" value="identity"/>
 <antcall target="generate-hbm"/>
</target>
<target name="generate-hilo">
 <property name="hibernate.id.value" value="hilo"/>
 <antcall target="generate-hbm"/>
</target>

Calling one target or the other will set the Ant property for that envi-
ronment; it then regenerates the mapping files. Next you need to mod-
ify the Event class to make the @hibernate.id tag dynamic:

/**
 * @hibernate.id generator-class="${hibernate.id.value}"
 * column="uid"
 */
public Long getId() { return id; }

Here you have basically inserted an Ant property directly into the
XDoclet tag. You can do this for any XDoclet property as well, so
there are a huge number of possibilities. It lets you move the details out
of the Java classes (where some developers may not want to put things
such as table or column names) and into Ant, which can be tweaked for
different environments.

Run the generate-hilo target. If all has gone well, when you inspect the
Event.hbm.xml file you should see something like this fragment:

<id name="id" column="uid" ="java.lang.Long"
 <generator class="hilo"><generator>
</id>
Licensed to Tricia Fu <tricia.fu@gmail.com>

310 CHAPTER 9 Hibernating with XDoclet
The correct Ant property has been inserted during generation, provid-
ing a new level of customization for your XDoclet generated files.
Alternatively, if you see this you know the Ant property hasn’t been
set correctly:

<id name="id" column="uid" ="java.lang.Long"
 <generator class="${hibernate.id.value}"><generator>
</id>

The ${} is a debugging hint: it means the Ant property wasn’t set
before you ran the hibernatedoclet task, so it just inserted the literal
string value. Double-check the order that Ant tasks are being run.

Even removing most of code duplication, you still had to handwrite one
file: hibernate.cfg.xml. As you added persistent classes you had to man-
ually add the path of the mapping files to it. Well, no longer. With
XDoclet 1.2.3, you can now generate the hibernate.cfg.xml file as part
of the build process. It will include all the classes that you have marked
with the @hibernate.class tag, as well as the database connection
information. You do this by adding a new subtask to the hibernate-
doclet task. Add the code in listing 9.5 to the build09.xml.

Listing 9.5 Excerpt from build.xml with hibernatecfg subtask

<property file="../hibernate.properties"/>
<hibernatedoclet
 destdir="${build.classes.dir}"
 verbose="true">
 <fileset dir="${src.java.dir}">
 <include name="**/*.java"/>
 </fileset>
 <hibernate version="3.0"/>
 <hibernatecfg
 dialect="${hibernate.dialect}"

9.6 Generating the hibernate.cfg.xml file

Loads database
properties as
Ant properties
 jdbcUrl="${hibernate.connection.url}"

Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 311
 driver="${hibernate.connection.driver_class}"
 userName="${hibernate.connection.username}"
 password="${hibernate.connection.password}"
 showSql="false"
 version="3.0"
 />
</hibernatedoclet>

Notice that you add the hibernatecfg subtask after the hibernate sub-
task (which as you might remember generates the .hbm.xml files). This
will generate the hibernate.cfg.xml file in the ${build.classes.dir}.
Note that since the hibernatecfg subtask actually requires the dialect
attribute, just go ahead and specify all the database connection proper-
ties. This means you don’t need to add the hibernate.properties file to
the classpath but rather load it as Ant properties. Then use them to
specify the needed properties to the hibernatecfg subtask. Finally, the
version attribute refers to the target version of Hibernate and can
accept either 3.0 or 2.0.

We’ve covered a lot of ground in this chapter, but there’s much that we
haven’t covered. For more information on other collection types, I rec-
ommend you check out the XDoclet Hibernate Tag Reference and the
Hibernate Reference documentation. Both are packaged with their
respective applications. We often bounce between them to find the
details of what our mapping files should look like, and then match up
the needed XDoclet tags to reverse-engineer our desired mapping files.

As you’ve learned in this chapter, while Hibernate requires mapping
files, you don’t need to be burdened with writing them. The single
definitive source for the association and relationships can and should
be the Java source code. Information should not be duplicated
between files, and class information should stay in that class.

9.7 Summary

Uses Ant properties to
generate the cfg.xml file
Licensed to Tricia Fu <tricia.fu@gmail.com>

312 CHAPTER 9 Hibernating with XDoclet
XDoclet is a code-generation tool that allows you to generate mapping
files from the single definitive source: the source code. It cuts the hand-
written work, reduces the errors that evils of duplication cause, and
facilitates rapid evolution of a project.

In this chapter, we explained how to install XDoclet, a tool that is used
during the build phase of a project. We explored how single object
associations can be expressed and generated with XDoclet, including
components. All of the essential Hibernate mapping elements can be
generated, such as <class>, <id>, and <property>. XDoclet can create
collection association elements like <map>, <list> and <set>. Most of
the associations that Hibernate allows can be expressed using XDoclet,
and, where that’s not possible, XDoclet provides extension points such
as merge points and property substitution.

Overall, XDoclet is a popular open source code-generation tool that
belongs in any Java developer’s toolkit. It’s a great timesaving tool that
can be used with Hibernate as well as a number of other projects.
Licensed to Tricia Fu <tricia.fu@gmail.com>

10
Unit testing with JUnit
and DBUnit

This chapter covers

• Learning to write tests with JUnit

• Using JUnit to test Hibernate

• Applying DBUnit to reset database state

hen the coding is done, how do you know your program is working as
you intended? Generally, the answer is testing. Writing code is only half
the battle; you need to verify that the code is doing what you think it

should. There are many types of testing, often done by members of your staff.
You may have acceptance testing done by the Quality Assurance department on
behalf of the customer, or integration testing defined by your architect or
development lead to make sure all the parts of the system are working together.
But the bedrock beneath all the higher-level tests is the unit test. Developers
unit-test their code by making sure the small bits of code (usually methods or
classes) work in isolation.

Unit tests can be carried out either manually or automatically. Manual
testing is merely acceptable, allowing a developer to spot-check that one
or two methods are working correctly. In Java it usually results in a lot of

W

313

System.out.println() statements or clicking around on a GUI. This

Licensed to Tricia Fu <tricia.fu@gmail.com>

314 CHAPTER 10 Unit testing with JUnit and DBUnit
approach has the benefit of requiring little investment, but is labor
intensive and doesn’t catch bugs in parts of the system that aren’t being
actively tested. Automatic testing, on the other hand, takes a bit of
work up front, but once you write your tests, you have a suite that can
be frequently and automatically run, assuring that bugs stay fixed.

This chapter is all about writing the automatic tests for your Hibernate
projects. We introduce an open source framework, JUnit, which is the
de facto standard for writing unit tests in Java. Unit testing is easy for
simple cases, but testing persistence layers, like Hibernate, is more
complex. This chapter aims to make that easier.

Chapter goals

By the end of the chapter, you should be able to do the following:

❂ Understand why unit testing is important.
❂ Know to how to get and install JUnit.
❂ Create a basic test with JUnit.
❂ Set up your environment and write tests for your Hibernate layer.
❂ Use DBUnit to set up and tear down a database for testing.

Assumptions

Since this chapter covers how to test Hibernate, we expect you to
understand the basics of Hibernate. In addition, while we’ll cover some
basic tenets of how to write unit tests, you should have some under-
standing of how to do testing, either manually or automatically. We’ll
build on this basic knowledge to explain how Hibernate should be
tested.

Since this chapter covers how to test Hibernate, we expect you to understand the basics of Hibernate. In addition, while we’ll cover some basic tenets of how to write unit tests, you should have some understanding of how to do testing, either manually or automatically. We’ll build on this basic knowledge to explain how Hibernate should be tested.

The core philosophy behind automated unit testing is that you should
test everything that could possibly break. As you build your program,

10.1 Introduction to unit testing
you write unit tests in the same code in which you’re writing the

Licensed to Tricia Fu <tricia.fu@gmail.com>

Introduction to unit testing 315
program. Method by method, class by class, verify that everything
works as it should, and when you’re done, you have a suite of tests for
the life of your program that can be used to make sure it stays working.

10.1.1 Automate those tests

Unlike with visual inspections, you don’t manually evaluate what each
method is doing every time you test it. Instead, you write code that
exercises and verifies that your methods do exactly what you think
they should. Using a framework like JUnit facilitates this by providing
a support structure to collect and run all the tests together.

To write some tests, you need to have a class to test. In this chapter,
let’s start with the basic Event we have seen in previous chapters. We’ll
add a method to it, isScheduledBefore(), which determines whether
the event is scheduled to start before a given date. This is the type of
method you might often see on a domain object, because it encapsu-
lates logic about the domain object where it belongs, inside Event. The
method looks like this:

/**
 * Determines if this event is scheduled before the given date.
 * @param date - The date to compare against.
 * @return true - if the event.startDate is prior to the given

date.
 */
public boolean isScheduledBefore(Date date) {
 return this.startDate.getTime() < date.getTime();
}

This is a fairly simple method, but there could easily be a bug in it, for
example, if you used a > instead of a <. It’s worth writing a unit test to
verify that the method works as expected, and stays working if you
later need to modify it. So let’s write a sample unit test.
Licensed to Tricia Fu <tricia.fu@gmail.com>

316 CHAPTER 10 Unit testing with JUnit and DBUnit
10.1.2 Assertions

Using JUnit, you start by extending the basic junit.frame-

work.TestCase class. Typically, for every class you test, you create at
least one TestCase. Here, for the Event class, create a TestEvent. It
helps to follow a consistent naming convention, so for a Class X, you
create a TestX or XTest.

JUnit works on the basis of assertions. Each test runs a method, given
a set of inputs, and verifies that the methods return the expected val-
ues. If an assertion fails, it throws an exception, which JUnit collects
for you, and generates a report. Listing 10.1 shows the TestEvent.java
file you should create now.

Listing 10.1 TestEvent.java, the JUnit test for Event

package com.manning.hq.ch10;

import junit.framework.TestCase;

import java.util.Calendar;
import java.util.Date;

public class TestEvent extends TestCase {

 public void testIsScheduledBefore() {
 Calendar c = Calendar.getInstance();
 c.set(2004, 5, 1);
 Date beforeDate = c.getTime();

 c.set(2004, 6, 1);
 Date actual = c.getTime();

 c.set(2004, 7, 1);
 Date afterDate = c.getTime();

 Event event = new Event();
 event.setStartDate(actual);

 assertTrue("Should be before",
event.isScheduledBefore(afterDate));

 assertFalse("Should be after",
event.isScheduledBefore(beforeDate));

 }
}

Sets up
sample datesB

Populates the
data on our eventC

Asserts that the
method returns trueD

Asserts that the
method returns falseE
Licensed to Tricia Fu <tricia.fu@gmail.com>

Introduction to unit testing 317
As you can see, this class has a single method, testIsScheduled-
Before(), which follows yet another naming convention. Any method
that starts with testXXX will be automatically collected into a suite and
run by the JUnit framework. You’ll see how this works in section 10.2,
but for now, just know that all your test methods should be named in
this way. Here’s a breakdown of what the method is doing:

The test needs sample data to use. So create three Date objects: your
actual start date, and then a date before and after.

Create an event, and populate it with the sample data.

The assertTrue() method takes two arguments: a description and a
Boolean condition. Here the Boolean condition is the isScheduledBe-
fore() method. You expect that if you pass it afterDate, it will return
true.

Here you expect isScheduledBefore() to return false, since you’re
passing in a date that is prior to your event. The assertFalse() method
verifies this.

10.1.3 Expect failures

So you have coded exactly how your method should work. When you
run your test method, as you’ll learn how to do in section 10.2, you
should get the message “All Tests Passed.” Suppose, instead, you’d
made an error in your isScheduleBefore() method; what would the
failure message look like? Something like this:

 [junit] Testcase:
testIsScheduledBefore(com.manning.hq.ch10.TestEvent):
FAILED
 [junit] Should be before
 [junit] junit.framework.AssertionFailedError: Should be before
 [junit] at
com.manning.hq.ch10.TestEvent.testIsScheduledBefore
(TestEvent.java:27)... (Stack Trace continued)

B

C

D

E

Licensed to Tricia Fu <tricia.fu@gmail.com>

318 CHAPTER 10 Unit testing with JUnit and DBUnit
The message indicates a few things. First, you can see the name of the
test class and method that failed. Second, often you may have more
than one assert in a test method, so the assert description you put in
your assert method ("Should be before") is also displayed. Finally, a
portion of the stack trace, with the exact line of code that threw the
exception (27) is displayed, so that you can easily debug the method.
Note that for the exact line number to appear, you must compile with
debug mode on, which we’ll look at in the next section. Both assertion
labels and exact line numbers in the exception will help to rapidly
determine that your method is broken, as well as where it is broken, so
that it can be fixed just as quickly.

Having written a basic unit test, let’s look at how to install a JUnit, set
it up in your build file, and run your unit test. Also, we’ll discuss a few
tips on how to organize the unit tests for best results.

Having seen what a simple unit test looks like, let’s cover how to install
JUnit and incorporate it into our build process. This may be familiar to
some readers already, so if you already know how to get and install
JUnit, feel free to skip ahead to section 10.3.

The first thing you need to do is download the JUnit library. You can
find it at www.junit.org, along with sample documentation. At the time
of writing, the current version was 3.8.1. Download the zip file and
install it alongside your other applications (on Windows, extract to
C:\applications\junit3.8.1). If you look into the expanded directory, the
really important file is the junit.jar file; the other files consist of user
guides, sample code, and JavaDocs.

10.2.1 Test-infecting your build file

One of the terms used to describe developers who enjoy (yes, it is pos-
sible) writing unit tests is “test infected”—they catch the “bug” and

10.2 JUnit
find writing tests to be extremely productive and satisfying. So on your

Licensed to Tricia Fu <tricia.fu@gmail.com>

JUnit 319
path to positive testing karma, the next step is to introduce it into your
Ant build file.

Ant provides several tasks specifically for working with JUnit: junit
and junitreport. Both are optional tasks, and both depend on having
the junit.jar file in the classpath. Ant actually makes this easy on you
and already includes a copy of the junit.jar file.

The JUnit task

The junit task runs one or more JUnit tests and compiles the results.
When you run tests, you obviously want to see the results. By default it
just reports the overall successes and failures, so you generally want
more information. For more detailed results, the task allows a number
of possible outputs, called formatters, including straight to the console,
or a formatted plain-text or XML file. If you generate an XML file,
you can use the next task, junitreport, to nicely format the results in
an HTML page. Here’s a sample of what a JUnit task would look like
in your build file:

<junit printsummary="true" >
 <classpath refid="runtime.classpath"/>
 <batchtest todir="${reports.dir}">
 <fileset dir="${build.classes.dir}"
 includes="**/Test*.class"/>
 </batchtest>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml" usefile="true" />
</junit>

Here’s what this task is doing. First, by specifying printsum-

mary="true", it summarizes all the test methods with a single class and
prints a line to the console that looks like this:

 [junit] Running com.manning.hq.ch10.TestEvent
 [junit] Tests run: 1, Failures: 1, Errors: 0,
 Time elapsed: 0 sec
Licensed to Tricia Fu <tricia.fu@gmail.com>

320 CHAPTER 10 Unit testing with JUnit and DBUnit
Next, you need to specify the classpath that contains your test case
(TestEvent.class), any class being tested (Event.class), junit.jar, and
the third-party JAR files (like Hibernate).

Next you run a batch test, which is extremely useful. Recall our point
about consistently naming the TestCases? Here’s where it pays off. The
<batchtest> element finds and runs any TestCase that matches the **/
Test*.class pattern. So any class in any directory that starts with Test
will be run. In addition, any generated files will be written out to the
${reports.dir} directory.

At this point, the brief formatter prints details for the tests that fail to
the console, such as the stack trace and description you saw in
section 10.1.3.

The XML formatter then generates an XML file, in the
${reports.dir} directory, with detailed statistics on each test case.
One report file will be generated for each TestCase class; by default
it’s based on the class name, and would be called TEST-com.man-
ning.hq.ch10.TestEvent.xml.

With the junit task set up, you can create new TestCases anywhere in
your project, and it will automatically pick them up and run them. Let’s
now look at how you can nicely format the test results in a publishable
HTML file.

The junitreport task

Once you have your results, you might want to publish the results, per-
haps on your corporate intranet. To do this, add the junitreport task
to your build file. This task has an external dependency on the Xalan
Extensible Stylesheet Language Transformation (XSLT) processor
(2.x or later). It collects all test results and runs an XSLT style sheet on
them to generate the HTML files. Let’s take a look at a sample task
that will convert the raw XML generated from the previous section
into a nicely formatted HTML page, complete with navigable frames.
<junitreport todir="${reports.dir}">
 <fileset dir="${reports.dir}">

Licensed to Tricia Fu <tricia.fu@gmail.com>

JUnit 321
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${reports.dir}/html"/>
</junitreport>

The whole process consists of two steps; first, the task compiles all the
individual test case reports into a single XML document, by default
called TESTS-TestSuites.xml. It then converts that to HTML. Here’s
a detailed breakdown of the task:

In the first line, the task specifies where the aggregate report (TESTS-
TestSuites.xml) will be written out. Next, the fileset specifies the loca-
tion where all the individual class report XML files are. (For this
example, this is the same directory where you generate the aggregate
report.)

Finally, the <report> element specifies the directory to write out the
HTML files and to use frames for navigation.

When you are done, you should have a reports/html directory, which
contains the nicely formatted text. To see the reports, open the
index.html file in your web browser. Figure 10.1 shows a sample of
what the output looks like.

Both the junit and junitreport tasks work together to make adding
and running tests an easy part of your build process. Next, let’s take a
look at a more complete build file that puts everything together.

10.2.2 Polishing off the build file

Although you’ve seen the syntax for the individual JUnit tasks, you
haven’t seen how they fit into the overall build file. You have a few
remaining things to do, including creating the reports directory and
adding a new target to the build file.

What you shouldn’t need to do is add the junit.jar file. For the simple
cases, you don’t have to do anything to get JUnit into the classpath. A
copy of it comes bundled with Ant, so no additional action is needed.

This is more of an issue with older versions of Ant; thankfully this

Licensed to Tricia Fu <tricia.fu@gmail.com>

322 CHAPTER 10 Unit testing with JUnit and DBUnit
problem has disappeared due to more convenient packaging in the
more current versions.

Building the reports directory

Because your reports are derived products from your source code,
much like .class files, they are not checked in version control and are
regenerated each time you build the project. So you want to rebuild the
reports directory each time you run the complete build. You also want
to create the properties that you can reuse throughout the build file.
Here’s what that looks like:

<property name="build.classes.dir" value="build/classes"/>
<property name="reports.dir" value="build/reports"/>
<!—Other properties and targets omitted -->
<target name="clean">
 <delete dir="${build.classes.dir}"/>
 <delete dir="${reports.dir}"/>

Figure 10.1 HTML output for the junitreport task
</target>
<target name="init">

Licensed to Tricia Fu <tricia.fu@gmail.com>

JUnit 323
 <mkdir dir="${build.classes.dir}"/>
 <mkdir dir="${reports.dir}"/>
</target>

As you can see, this code features a new property, ${reports.dir},
which should go near the top of the file, next to the
${build.classes.dir} property. You’ve also modified the clean and
init tasks so that they delete and create the directory each time.

Adding a testing task

Finally, you want to create a new task, which will run your unit tests
and will be called when your normal build target is called. Listing 10.2
shows the new target, as well as the modified build target.

Listing 10.2 A new target, test, that runs the unit tests and
generate reports, along with the modified build target

<target name="test">
 <junit printsummary="true">
 <classpath refid="runtime.classpath"/>
 <batchtest todir="${reports.dir}" >
 <fileset dir="${build.classes.dir}"
 includes="**/Test*.class"/>
 </batchtest>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml" usefile="true"/>
 </junit>
 <junitreport todir="${reports.dir}">
 <fileset dir="${reports.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${reports.dir}/html"/>
 </junitreport>
</target>
<target name="build"
 depends="clean,generate-hbm,test"
 description="Compiles all the classes in the chapter,
 generates the .hbm.xml and runs the unit tests.">
</target>
Licensed to Tricia Fu <tricia.fu@gmail.com>

324 CHAPTER 10 Unit testing with JUnit and DBUnit
As you can see, the new target just runs both JUnit tasks in the proper
order. You’ve also modified the build target to make sure it runs the
unit tests as a standard part of the build. You’ve now integrated the
JUnit framework into your build process. It should be very straight-
forward to extend your test coverage by adding new test cases. So hav-
ing covered a simple unit test, let’s kick it up a notch by learning how
to test Hibernate code.

Let’s be honest: using JUnit to test a simple class in isolation is pretty
darn trivial. It gets quite a bit more complex when you try to test code
that is “connected” to other systems, such as a database. Some people
recommend using Mock objects to stub out things like databases. This
works fine, if you’re trying to test something like a Struts Action, and
you mock your DAOs to return sample data rather than go to the data-
base. But how do you know that your DAOs work correctly? Did you
write your HQL correctly?

This section covers the basics of testing your persistence layer, what to
test, and when testing is valuable. We’ll discuss the fundamentals of
what testing a database is all about, as well as what about Hibernate we
are testing.

10.3.1 What do we want to test?

The first thing you should decide is what you’re going to test. An Agile
methodology, like Extreme Programming (www.extremeprogram-
ming.org), recommends that you test everything that could possibly
break. For your persistence layer, Hibernate, there are a number of
things you expect to work. You have to verify them somehow, and unit
tests are a great way to do this. Here is an overview of some of the com-
mon things you should verify.

Expect classes to be persistent

The most basic error is that you try to save a class that hasn’t been

10.3 Testing the persistence layer
declared persistent, i.e., you failed to add its mapping file to the hiber-

Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing the persistence layer 325
nate.cfg.xml file or to your Spring applicationContext.xml file. Or you
didn’t create a mapping file at all. Unit testing can verify that classes
can be saved or loaded.

Expect mapped fields to persist

A second point of failure involves the details of our mapping files. You
want to make sure you’ve defined your persistence mappings correctly.
The error could be a misspelled field name or more likely a completely
missing field. The latter would mean a field is actually just transient
and never gets written out to the database. This category of bugs
includes mistakes in field/columns modifiers, such as expecting a field
to be unique or holding more than 255 characters.

Expect persistent entities to cascade

In addition to the simple fields, bugs can exist in the more complex
relationships, such as many-to-one or collections. Here you want to
verify both that the entities save to the database correctly and that the
cascades you declared work correctly. For example, if you create a new
Event with a corresponding many-to-one Location, you want to verify
that the cascade="save-update" is actually saving both new objects
with a single save() call.

Expect queries to return the right objects

In a Hibernate application, you’ll typically write a lot of HQL queries.
You expect these queries to return the right set of objects based on the
criteria you specified. If you take our recommendation and collect all
your HQL into a data access layer, this essentially amounts to testing
the DAO layer. A unit test can verify that a query works at all (i.e., an
HQL syntax check), that it returns the objects it should, and that it
doesn’t return objects it shouldn’t.

10.3.2 Testing basic persistence

Having now covered some of the basic scenarios you’d want to write
unit tests for, let’s go ahead and actually write a few tests. In this sec-
tion, you’ll write a simple test that verifies that Events persist correctly,

along with a few of their fields.

Licensed to Tricia Fu <tricia.fu@gmail.com>

326 CHAPTER 10 Unit testing with JUnit and DBUnit
Organizing your tests

You’ll modify the TestEvent you created in section 10.1.2, but before
you do, let’s back up and talk about organizing your test files. The
question to answer is: where do you actually create the TestEvent file?

Typically, you want a test class to be in the same package as the class
being tested. This allows you to call and test package-scoped methods,
which can be useful. But you also don’t want to make it too difficult to
separate the unit tests from the production code. The solution is to cre-
ate a mirror directory structure, which allows keeping the source sepa-
rate but in the same package.

So create a /test directory in parallel to the /java directory. This direc-
tory will hold all the JUnit tests. Within that directory, create a com/
manning/hq/ch10 directory, and add the TestEvent.java file there.
When you’re done, you should have something similar to the following
directory structure:

/src/java/com/manning/hq/ch10/Event.java
/src/test/com/manning/hq/ch10/TestEvent.java

Since the TestEvent.java file isn’t in our Ant-defined directory,
${src.java.dir}, it won’t be compiled along with the production source
code. So you need to add the following to your Ant build file to compile
the test code:

<property name="test.java.dir" value="src/test"/>

<target name="compile" depends="init">
 <javac srcdir="${src.java.dir}"
 destdir="${build.classes.dir}" debug="true">
 <classpath refid="hibernate.lib.path"/>
 </javac>
 <javac srcdir="${test.java.dir}"
 destdir="${build.classes.dir}" debug="true">
 <classpath refid="hibernate.lib.path"/>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing the persistence layer 327
 </javac>
</target>

The new portions appear in bold. You define a new property for the
directory of the tests and then add a second compile task to compile the
source code to the same location as the production code. At this point,
you have everything you need to add the modifications to write your
persistence test next.

Event, persist thyself!

In this section, you’ll persist an event and make sure it works for saves
and loads correctly. Listing 10.3 contains the test method.

Listing 10.3 TestEvent.java, with a testPersists() method which
verifies that an Event saves and loads correctly

package com.manning.hq.ch10;
import org.hibernate.Session;
import com.manning.hq.ch10.HibernateFactory;

public void testPersists() throws Exception {
 HibernateFactory.buildSessionFactory();
 Session session = HibernateFactory.openSession();
 Session session2 = HibernateFactory.openSession();

 Event event = new Event();
 event.setName("Hello, I'm an Event!");
 try {
 session.save(event);
 session.flush();

 Event actualEvent = (Event)
 session2.load(Event.class, event.getId());
 assertNotNull("Should return an object", actualEvent);
 assertEquals("Ids should match",
 event.getId(), actualEvent.getId());
 assertEquals("Check names",
 event.getName(), actualEvent.getName());
 } finally {
 session.delete(event);

Opens two
different
sessions

B

Creates your
transient event
and populates it

C

Saves the event and
flushes changes to
the database

D

ELoads the event from
a different session

FVerifies the
object is

loaded
correctly

Restores the database and
cleans up the sessions

G

 session.flush();

Licensed to Tricia Fu <tricia.fu@gmail.com>

328 CHAPTER 10 Unit testing with JUnit and DBUnit
 HibernateFactory.close(session);
 HibernateFactory.close(session2);
 }
}

Overall, the testPersists() method creates an Event, saves it, loads
it, and finally cleans up and deletes it. So if it works, it verifies a
number of the conditions we mentioned in section 10.3.1. Here’s a
detailed breakdown:

You initialize the SessionFactory and create two different sessions.
Why two? Remember that sessions keep an in-memory cache of all the
objects that they save or load for performance reasons. So if you saved
an event and then loaded it through the same session, it wouldn’t really
tell you that the new row was created in the database. Using a second
session is one way to verify it’s a complete trip to the database.

Here you create your event and give it some sample data.

Next, you save the event and flush the changes to the database.

Here you load the event through the second session, using the primary
key that was assigned to the event object by Hibernate.

Do a few tests to make sure the object was returned (not null), and that
it matches the id and name field. You can easily verify that other fields
are persisting as well by adding them to the method, just like the name
field.

After your test is done, you need to clean up after yourself. You want to
reset the database to its original state before the test so that you don’t
alter the behavior of other unit tests. So you delete the event that you
created and close the sessions.

That’s a sample unit test in a nutshell. It certainly could use a bit of
refactoring, but it gets the job done. Some potential points of refactor-
ing include moving the setup of data and cleanup into JUnit’s setUp()
and tearDown() methods, which you’ll see in section 10.3.4.

B

C

D

E

F

G

Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing the persistence layer 329
10.3.3 Testing queries

Much like testing basic persistence, you can also do tests to verify that
your queries work correctly. The general rule to follow involves put-
ting a few objects into the database, some of which should be returned
and others that will not. This allows you to avoid both false positives
and negatives, where a query returns either too much or too little data.

Assume for a moment that you want to test the findEventsFor()
method from the EventDao class in chapter 8, which looked like this:

public List findEventsFor(int month, int year);

It returns all Events based on a Date for a given month and year. Under
the covers, it uses an HQL query that looks something like this:

from Event event where event.startDate >=
 :firstDay and event.startDate < :lastDay

You want to verify that the HQL is written correctly and that your
method works as expected, so you need to write a unit test for it. Go
ahead and create a TestEventDao (listing 10.4) in the same directory as
the TestEvent class.

Listing 10.4 TestEventDao.java, with a testEventsFor() method

package com.manning.hq.ch10;

import java.util.List;
import org.hibernate.Session;
import com.manning.hq.ch10.HibernateFactory;
import com.manning.hq.ch10.EventDao;
import com.manning.hq.ch10.DateUtils;
import junit.framework.TestCase;

public void testFindEventsFor() throws Exception{
 Event eventBefore = new Event();
 Event eventIn = new Event();
 Event eventAfter = new Event();

 eventBefore.setStartDate(DateUtils.newDate(6, 1, 2005));

Creates three events

Sets dates for
months being testing
 eventIn.setStartDate(DateUtils.newDate(7, 1, 2005));

Licensed to Tricia Fu <tricia.fu@gmail.com>

330 CHAPTER 10 Unit testing with JUnit and DBUnit
 eventAfter.setStartDate(DateUtils.newDate(8, 1, 2005));

 EventDao eventDao = new EventDao();
 Session session = HibernateFactory.openSession();
 try {
 session.save(eventBefore);

 session.save(eventAfter);
 session.save(eventIn);
 session.flush();

 List eventsFor = eventDao.findEventsFor(7, 2005);
 assertEquals("Should return 1", 1, eventsFor.size());
 Event actualEvent = (Event) eventsFor.get(0);
 assertEquals("Should be eventIn, not the other events.",
 eventIn.getId(), actualEvent.getId());
 } finally {
 session.delete(eventBefore);
 session.delete(eventIn);
 session.delete(eventAfter);
 session.flush();
 HibernateFactory.close(session);
 }
}

Let’s review the code more in depth. First, by creating three events, you
can test that the query returns events in the given month, but not those
from the two surrounding months. Note that you save the months using
the session, rather than the EventDao, since you’re testing the find-
EventsFor(), not the create() or delete() method. After running the
query, check the size of the results list. Verify that only one event is
returned, and that the event you expected was the one returned.

Note that there is a pretty big assumption underlying this test: as it’s
written, you might get false negatives. In other words, this method can
actually fail, even though the findEventsFor() method works cor-
rectly. If there are excess objects (events) in the database (maybe from
other tests), they could be returned by the query, causing failures. We
discuss ways to avoid this in the next section.

Persists the test events

Runs the query

Verifies the
results of
the queryCleans up
Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing the persistence layer 331
10.3.4 General database testing tips

In the previous sections, we looked at examples of writing unit tests for
your Hibernate code. The tests so far illustrate a few of the important
items you should test and how to test them. This section adds more
tips, which should streamline your database testing.

Use multiple databases

To test a database, you must have a database to test against. We’ve
assumed you’re using a local developer database. On a project, each
developer should have his or her own local database, which the devel-
oper uses to run the tests against. This approach has multiple benefits.

For one, database testing is naturally slow even when you run tests
against a local copy of the database; you don’t add network latency into
the equation by testing against a remote database, which would make it
slower still. Second, and more important, it’s safer because you’re iso-
lated from other database operations. This means you can do whatever
is necessary to the database without worrying about affecting produc-
tion data or other developers.

As an additional step, you may even want to have a second local data-
base, specifically for automated testing. This allows for a populated
local database to perform manual tests without having to worry about
them affecting the automated tests.

With the examples thus far, you’ve used the events_calendar database
for your web application and other tests. A second automated test data-
base might be called events_calendar_testing. The only mild compli-
cation is how you configure the hibernate.cfg.xml file to point to the
different databases, one for deploying your application and the other
for unit testing. What you definitely don’t want to do is write two dif-
ferent hibernate.cfg.xml files; duplication is bad news.

Several courses of action are at your disposal. In chapter 3, we looked
at using both a hibernate.cfg.xml and a hibernate.properties file. You
can have multiple hibernate.properties, for multiple databases.
Licensed to Tricia Fu <tricia.fu@gmail.com>

332 CHAPTER 10 Unit testing with JUnit and DBUnit
A second method available is Ant filtering, as used with XDoclet prop-
erty substitution in chapter 9. When you insert special @ symbols
around properties in the file, Ant can replace them at build time. Here’s
what the prefiltered hibernate.cfg.xml file would look like:

<hibernate-configuration>
 <session-factory>
 <property name="connection.username">@db.username@</property>
 <property name="connection.password">@db.password@</property>
 <property name="connection.url">@db.url@</property>
 <property
 name="connection.driver_class">@db.driver@</property>
 <property name="dialect">@db.dialect@</property>
 <mapping resource="com/manning/hq/ch10/Event.hbm.xml"/>
 <mapping resource="com/manning/hq/ch10/Speaker.hbm.xml"/>
 <mapping resource="com/manning/hq/ch10/Location.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

This code allows a single file to be deployed against any number of
databases, and can even be used to deploy an application to develop-
ment, testing, and production servers. The next step is to filter the file
using Ant filter targets and separate properties file for each database.
Here’s what the unit-test.properties file might look like:

db.username=root
db.password=
db.url=jdbc:mysql://localhost/events_testing
db.driver=com.mysql.jdbc.Driver
db.dialect=org.hibernate.dialect.MySQLDialect

The final step is to write the Ant filter (listing 10.5) that copies and
replaces the database values.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing the persistence layer 333
Listing 10.5 Portion of build10.xml, demonstrating how to load the
properties file and the filter hibernate.cfg.xml

<target name="set-unit-testing">
 <property file="unit-test.properties" />
</target>
<target name="filter-cfg">
 <filterset id="db.filtering" >
 <filter token="db.username" value="${db.username}" />
 <filter token="db.password" value="${db.password}" />
 <filter token="db.url" value="${db.url}" />
 <filter token="db.driver" value="${db.driver}" />
 <filter token="db.dialect" value="${db.dialect}" />
 </filterset>
 <copy todir="${build.classes.dir}">
 <fileset file="src/config/hibernate.cfg.xml" />
 <filterset refid="db.filtering" />
 </copy>
</target>
<target name="generate-unit-testing"
 depends="set-unit-testing,filter-cfg"/>

Listing 10.5 shows how the same filtering logic can be used to filter and
deploy the same hibernate.cfg.xml file for multiple environments.
Using this technique allows you to run your tests against any database
that you need to.

Write nonbrittle tests

Another way to make sure your tests are quite robust is to not assume
too much knowledge about what rows might be in database already. It
would be counterproductive for a query test to fail just because there
was an extra event in the database. Take, for example, this test from
section 10.3.3:

List eventsFor = eventDao.findEventsFor(7, 2005);
assertEquals("Should return 1", 1, eventsFor.size());
Event actualEvent = (Event) eventsFor.get(0);

Loads properties
from a properties file

Replaces @db.username@
with property value

Loads properties file
and runs filter
Licensed to Tricia Fu <tricia.fu@gmail.com>

334 CHAPTER 10 Unit testing with JUnit and DBUnit
assertEquals("Should be Event In, not the other events.",
 eventIn.getId(), actualEvent.getId());

Here you expected exactly one row to be returned. That’s great if you
can be 100 percent certain that only one row should come back. But it’s
a bit brittle. Below is a more robust version, but still you get only the
event you expect and not the ones you didn’t:

assertTrue("Should return 1", eventsFor.size() >= 1);
assertTrue("Should contain", contains(eventsFor, eventIn));
assertFalse("Shouldn't contain before", contains(eventsFor,
eventBefore));
assertFalse("Shouldn't contain after", contains(eventsFor,
eventAfter));

This, of course, requires you to add a method to TestEvent.java to ver-
ify that the list contains your event:

import java.util.Iterator;
import java.util.List;

private boolean contains(List list, Event contained) {
 for (Iterator it = list.iterator(); it.hasNext();) {
 Event event = (Event) it.next();
 if(event.getId().equals(contained.getId())){
 return true;
 }
 }
 return false;
}

The new assertions are less likely to fail when there is other extrane-
ous data in the returned list. You just need to add a new method to
iterate over the result set, since you can’t know where the extra objects
might be.

If you know exactly what is in the database, this technique might not

be necessary. But in case you don’t, avoid brittle tests.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing the persistence layer 335
Reset the database to a known state

As mentioned earlier, one of the most important principles of testing is
that the results for each test shouldn’t affect any other tests. With data-
base testing, this requires extra caution; because the database is shared
between all the tests, what you leave in the database in one test can eas-
ily affect the next one.

The best way to avoid this problem is to reset the database to a known
state between test runs. You’ve done a fairly simple form of this in your
unit tests so far, by using a finally block to delete each object that you
insert, like so:

Session session = HibernateFactory.openSession();
try {
 session.save(eventBefore);
 session.save(eventAfter);
 session.save(eventIn);
 session.flush();

 // Actual testing code excluded for brevity
} finally {
 session.delete(eventBefore);
 session.delete(eventIn);
 session.delete(eventAfter);
 session.flush();
 HibernateFactory.close(session);
}

This works, but you have to be vigilant and make sure you don’t forget
to clean up after yourself. An easier alternative is available if you’re
using a local testing database. You can use the setUp() method to reset
the database to empty before each test:

protected void setUp () throws Exception {
 super.setUp();
 Session session = HibernateFactory.openSession();
 session.createQuery("delete Event").executeUpdate();
 HibernateFactory.close(session);

}

Licensed to Tricia Fu <tricia.fu@gmail.com>

336 CHAPTER 10 Unit testing with JUnit and DBUnit
As you may know, the setUp() method is run before every test. Here
you’ve overridden it so that it deletes all rows from your events table
before every test. This ensures that no extra rows sneak into your que-
ries. We use Hibernate’s batch delete feature to remove the rows with-
out having to load all the persistent objects into memory.

In the next section, we introduce an extension to JUnit specifically for
testing database-related code.

Unit-testing database code presents some different challenges. To have
effective tests, you must ensure that the database is in a consistent state
before and after each test run. Throughout this chapter, you’ve been
using Hibernate to set up and tear down your tests. Although this
approach works, it could be argued that because you’re actually testing
Hibernate, you should use something other than Hibernate to set up
the tests and confirm that operations performed by Hibernate have
succeeded. This is where DBUnit comes in.

DBUnit, written by Manuel Laflamme, is designed to make reproduc-
ible database testing easier. It provides mechanisms to load test data,
validate the state of database tables, and clean up once tests have run.

10.4.1 Loading test data

In the past, developers have had to load test data into databases using
SQL scripts. The disadvantage of using SQL scripts for test data is
that they can be difficult to maintain if the database structure changes.
DBUnit allows you to create a DTD of your database schema and use
an XML file to store test data. While typically more verbose than a
SQL script, XML has the advantage of validating against the DTD,
which informs you when your test data is out of date.

Creating the DTD

All of the tasks performed by DBUnit are performed through Ant
tasks, including creating the DTD of the database schema. The dbunit

10.4 Testing with DBUnit
task to create the DTD is shown here:

Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing with DBUnit 337
<target name="create-db-schema">
 <property file="hibernate.properties"/>
 <taskdef name="dbunit" classname="org.dbunit.ant.DbUnitTask"
 classpathref="runtime.classpath"/>
 <dbunit driver="${hibernate.connection.driver}"
 url="${hibernate. connection.url}"
 userid="${hibernate. connection.username}"
 password="${hibernate. connection.password}">
 <export dest="database-schema.dtd" format="dtd"/>
 </dbunit>
</target>

Here, you’re getting the property values from the hibernate.proper-
ties file in the example source tree. Executing this task creates a file
named database-schema.dtd in the current directory. You then refer-
ence the DTD in the XML file containing your test data.

Creating test data

DBUnit supports a few different XML formats. The easiest one to use
is the flat XML format, in which each element represents a row of test
data and the individual columns are represented by the attributes. For
example, consider the following:

<dataset>
<!DOCTYPE dataset SYSTEM "database-schema.dtd">
 <events id="1937" name="Test Event 1"

 start_date="2005-01-27" duration="180"/>
</dataset>

This <dataset> element represents a single row of test data for the
events table. The <dataset> element is the root element for the XML;
all test data elements must be contained within <dataset> elements.
Once you’ve created the test data, you can import it into the database.

Importing test data

Depending on how you choose to execute your tests, you could import
the test data using Ant or programmatically. Let’s look at how to use

Ant first. The Ant task is shown here:

Licensed to Tricia Fu <tricia.fu@gmail.com>

338 CHAPTER 10 Unit testing with JUnit and DBUnit
<target name="import-test-data">
 <taskdef name="dbunit" classname="org.dbunit.ant.DbUnitTask"
 classpathref="runtime.classpath"/>
 <dbunit driver="${hibernate.connection.driver}"
 url="${hibernate. connection.url}"
 userid="${hibernate. connection.username}"
 password="${hibernate. connection.password}”>
 <operation type="INSERT" src="testdata.xml"/>
 </dbunit>
</target>

The <operation> element has the type attribute set to INSERT, which
means the test data will be inserted into the tables. All options to the
type attribute are shown in table 10.1.

Table 10.1 DBUnit Ant operations

Type Operation Definition

INSERT Inserts the contents of the dataset into the database.

UPDATE Updates the data that exists in the database with the
contents of the dataset.

DELETE Deletes the contents of the dataset from the data-
base.

DELETE_ALL Deletes all rows of data from the database that are
contained in the dataset.

REFRESH Refreshes the contents of the database to match the
dataset.

CLEAN_INSERT Removes the contents of the database and inserts
the contents of the dataset.

MSSQL_ INSERT Performs special insert operation for Microsoft’s SQL
server.

MSSQL_REFRESH Performs special refresh operation for Microsoft’s
SQL server.

MSSQL_CLEAN_INSERT Performs special clean insert operation for
Microsoft’s SQL server.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing with DBUnit 339
Test data can also be loaded programmatically, which is valuable if
you’ve created a base test case and store the data for each test case in
separate files. We’ll expand on the custom subclass of DatabaseTest-
Case in the next section, but first, let’s look at the method used to load
the test data, shown in listing 10.6.

Listing 10.6 Importing test data programmatically

package com.manning.hq.ch10;

import org.dbunit.DatabaseTestCase;

import org.dbunit.dataset.IDataSet;
import org.dbunit.dataset.xml.FlatXmlDataSet;
import java.io.InputStream;

public abstract class ProjectDatabaseTestCase
 extends DatabaseTestCase {

 public ProjectDatabaseTestCase(String name) {
 super(name);
 }

 protected abstract String getDataSetFilename();

 protected IDataSet getDataSet() throws Exception {
 String file = getDataSetFilename();
 if (file == null) {
 return null;
 }
 else {
 InputStream fileStream =
 loadFromClasspath(file);
 InputStream dtdStream =
 loadFromClasspath("database-schema.xml");
 return new FlatXmlDataSet(fileStream, dtdStream);
 }
 }

 private InputStream loadFromClasspath(String s)
 throws Exception {

 ClassLoader cl =

Returns the name
of the dataset file
for a test case

Gets the name of
the file to loadReturns null if the

filename is null

Loads the
dataset file
from the
classpath

Loads the
DTD for the

database
schema

from the
classpath

Returns a
FlatXmlDataSet object

for the dataset and DTD
 Thread.currentThread().getContextClassLoader();

Licensed to Tricia Fu <tricia.fu@gmail.com>

340 CHAPTER 10 Unit testing with JUnit and DBUnit
 return cl.getResourceAsStream(s);
 }
}

The getDataSet() method is inherited from DatabaseTestCase. You
implement it to return a new FlatXmlDataSet object for a specific
dataset file. Additionally, you add an abstract method, getDataSetFile-
name(), to be implemented by subclasses. The String returned by get-
DataSetFilename() tells the ProjectDatabaseTestCase which file to
load for the specific test case. The loadFromClasspath(String) method
is a utility method that loads a file from the classpath as an InputStream.

With the variety of operations available, it’s easy to restore the data-
base instance to a known state between test runs. Next, you’ll expand
on the ProjectDatabaseTestCase class and write a unit test that sub-
classes it.

10.4.2 ProjectDatabaseTestCase

You saw our ProjectDatabaseTestCase in the previous section. In this
section you’ll flesh it out and create a subclass suitable for testing your
EventDao class. To begin, it’s important to understand why you needed
to subclass DBUnit’s DatabaseTestCase in the first place.

In your unit tests thus far you have one XML file per test case, which
allows you to isolate the test data for each test case. In our experience,
having a massive XML file containing test data for all unit tests quickly
becomes cumbersome. Having a base class for your tests cases to
extend allows you to centralize the logic used to load the dataset. With
the administration functions located in a superclass, your test cases can
focus on testing functionality.

Listing 10.7 shows the complete ProjectDatabaseTestCase.

Listing 10.7 ProjectDatabaseTestCase

package com.manning.hq.ch10;
import org.dbunit.DatabaseTestCase;

Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing with DBUnit 341
import org.dbunit.database.IDatabaseConnection;
import org.dbunit.database.DatabaseConnection;
import org.dbunit.operation.DatabaseOperation;

import java.io.InputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.util.Properties;

public abstract class ProjectDatabaseTestCase
extends DatabaseTestCase {

 private static String driver =
 "hibernate.connection.driver_class";
 private static String url = "hibernate.connection.url";
 private static String username =

"hibernate.connection.username";
 private static String password =

"hibernate.connection.password";

 public ProjectDatabaseTestCase(String name) {
 super(name);
 }

 protected abstract String getDataSetFilename();

 protected IDataSet getDataSet() throws Exception {
 String file = getDataSetFilename();
 if (file == null) {
 return null;
 }
 else {
 InputStream fileStream =
 loadFromClasspath(file);
 InputStream dtdStream =
 loadFromClasspath("database-schema.xml");

 return new FlatXmlDataSet(fileStream, dtdStream);
 }
 }

 protected DatabaseOperation getSetUpOperation() {
 return DatabaseOperation.REFRESH;
 }
 protected DatabaseOperation getTearDownOperation() {

Licensed to Tricia Fu <tricia.fu@gmail.com>

342 CHAPTER 10 Unit testing with JUnit and DBUnit
 return DatabaseOperation.DELETE_ALL;
 }

 protected IDatabaseConnection getConnection() throws Exception
{

 Properties p = new Properties();
 p.load(loadFromClasspath("hibernate.properties"));

 Class.forName(p.getProperty(driver));
 Connection c =
 DriverManager.getConnection(p.getProperty(url),
 p.getProperty(username),
 p.getProperty(password));
 return new DatabaseConnection(c);
 }

 private InputStream loadFromClasspath(String s)
 throws Exception {

 ClassLoader cl =
 Thread.currentThread().getContextClassLoader();
 return cl.getResourceAsStream(s);
 }
}

The getConnection() method, returning an instance of DBUnit’s IDa-
tabaseConnection class, is also an abstract method inherited from
DatabaseTestCase. You create a JDBC connection and wrap it with an
instance of DatabaseConnection, another DBUnit class. While your
Hibernate classes won’t use the connection, your test code will use it to
verify that your Hibernate operations actually impacted the database.

The base class also overrides two methods from DatabaseTestCase:
getSetUpOperation() and getTearDownOperation(). These two meth-
ods define the operations that DBUnit will use to set up and tear down
the database state before and after each test, respectively. This is signif-
icant because, as we’ve explained several times, you need to ensure the
state of the database before and after each test. The default implemen-
tation is to refresh data before each test and delete everything after

each test completes.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Testing with DBUnit 343
Now let’s implement the new TestEventDao class.

TestEventDao

The updated version of the TestEventDao class, which subclasses Pro-
jectDatabaseTestCase, is shown in listing 10.8.

Listing 10.8 Updated TestEventDao class

public class TestEventDao extends ProjectDatabaseTestCase {

 private EventDao eventDao;

 public TestEventDao(String name) {
 super(name);
 }

 public String getDataSetFilename() {
 return "TestEventDao.xml";
 }

 public void setUp() throws Exception {
 super.setUp();
 eventDao = new EventDao();
 }

 public void testFindEventsFor () throws Exception {
 List eventsFor = eventDao.findEventsFor(7, 2005);
 assertEquals("Should return 1", 1, eventsFor.size());
 Event event = (Event) eventsFor.get(0);
 assertEquals("ID should be 1000", new Long(1000),
 event.getId());
 }
}

If you compare the testFindEventsFor() method with the one found in
section 10.3.3, you can see that it skips loading the test data and restor-
ing the state of the database. You’re almost ready to run this test case.

Before you can test, you must define your test data. The XML file
shown here contains three entries for the events table that are similar
to the Event instances created when you used vanilla JUnit in

Defines the name of
the test data file

Verifies the
number of

results

Retrieves the Events
for a certain date

Verifies that the Event id
matches your assertion
section 10.3.3:

Licensed to Tricia Fu <tricia.fu@gmail.com>

344 CHAPTER 10 Unit testing with JUnit and DBUnit
<dataset>
 <events id="1000" name="Test Event 1" start_date="2005-06-01"/>
 <events id="2000" name="Test Event 2" start_date="2005-07-01"/>
 <events id="3000" name="Test Event 3" start_date="2005-08-01"/>
<dataset>

The test data is stored in the TestEventDao.xml file and is loaded
before your test runs. (You’ll recall that the logic to load the file is in
the ProjectTestCase class.) Once the test data is loaded, the test exe-
cutes. If you have multiple tests in the test cases, the data is refreshed
before each test.

However, we’ve only looked at a subset of DBUnit’s functionality. You
can also use DBUnit to verify the state of the database. Let’s look at
another test method:

public void testPersists() throws Exception {
 HibernateFactory.buildSessionFactory();
 Session session = HibernateFactory.openSession();
 Transaction trans = session.beginTransaction();
 Event event = new Event();
 event.setName("Another test event.");
 session.saveOrUpdate(event);
 trans.commit();

 ITable table = getConnection().createQueryTable("events",
 "select * from events where name='Another test event.'");
 assertEquals("Specified event not found.", 1,
 table.getRowCount());
}

The ITable class encapsulates the data retrieved by the SQL statement.
You then use the ITable to ensure that only one row was retrieved from
the events table. Why should you use DBUnit to verify the state of the
database when you can do the same thing with Hibernate?

Our argument for using DBUnit to verify the state of the database is

Creates a table
object that contains

data from the SQL
statement

Verifies that only one
result was returned
pretty simple. If you’re testing your application code, which uses

Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 345
Hibernate, you shouldn’t also use that code to verify the state of the
database. Think of DBUnit as an impartial witness to the state of the
database.

If you want to make sure your code works correctly, test it. The best
way to make sure your code works, and stays working, is to write auto-
mated unit tests that run every time you build your project. JUnit is
even useful for testing databases and Hibernate.

In this chapter, we covered how you can get and install JUnit. We also
looked at how to write simple unit tests, which can be used to test your
class’s domain logic. Because testing databases isn’t as easy as testing
simple classes, Hibernate has some specific items you want to test.
These include verifying that classes are persistent, that mapping files
are correctly written, that entities cascade correctly, and that queries
are returning the objects you expect. Finally, we discussed a few gen-
eral tips for testing databases, including using multiple databases,
avoiding brittle tests, and resetting the database to known states
between tests.

Much of the code we used was basic JUnit. The setup used in this
chapter is effective but pretty simple, and you might want to be more
elaborate. As a next step, for example, you can improve your unit tests
by incorporating a more advanced developed database-testing frame-
work, like DBUnit.

DBUnit provides methods to prepopulate the database with test data,
as well as clean up after tests have been completed. When you move
these responsibilities to an external framework, your test code can
focus more on testing functionality and less on plumbing. Additionally,
DBUnit provides classes and methods to access the state of the data-
base, providing independent verification of the state of the database.

10.5 Summary
Licensed to Tricia Fu <tricia.fu@gmail.com>

11
What’s new in Hibernate 3

This chapter covers

• Filtering persistent objects

• Creating mapping files with annotations

• Persistent events

n Hibernate’s short history, it has become one of the most popular persistence
services for Java applications. When Hibernate 2 was released in June of
2003, it addressed most of the persistence problems developers commonly

encounter. With the release of Hibernate 3 in March 2005, developers have a
number of new features to take advantage of, such as filtering query results and
utilizing stored procedures.

One of the focuses of Hibernate 3 is improved support for legacy data-
base schemas, as well as support for stored procedures and using custom
SQL statements. Another feature introduced in the latest release is the
ability to persist Maps just as you would a JavaBean.

While the code examples in this book have included Hibernate 3 syntax
when appropriate, this chapter gives you a more focused overview of
many of the important new features found in Hibernate 3.

I

346

Licensed to Tricia Fu <tricia.fu@gmail.com>

Filters 347
Suppose your application tracks sales for a company, and you only
want to see sales for each person for the current quarter. You could
probably handle this by writing an HQL statement to return the cur-
rent results for the quarter, but calling an external query isn’t ideal if
the same business rule should be applied every time the results are
viewed. Instead, it makes sense to apply a filter on the returned data at
runtime. This is where filters come in.

Filters, or virtualization, allow you to apply filtering criteria to
returned objects at the Session level. You can pass parameters to fil-
ters, and they work with classes or collections. To use filters, you first
define them in the mapping files, and then enable a given filter by name
when using the Session object. The filters are defined in the mapping
definition, within the hibernate-mapping element:

<hibernate-mapping>
 …
 <filter-def name="nameFilter">
 <filter-param name="nameFilterParam" type="string"/>
 </filter-def>
 …
</hibernate-mapping>

With the filter defined, we can apply it to persistent classes and collec-
tions:

<class name="Event">
 …
 <filter name="nameFilter"
 condition=":nameFilterParam = name"/>
 <set name="attendees">
 …
 <filter name="nameFilter"
 condition=v:nameFilterParam = last_name"/>
 </set>
</class>

11.1 Filters
Licensed to Tricia Fu <tricia.fu@gmail.com>

348 CHAPTER 11 What’s new in Hibernate 3
This code applies the filter to the name column in the events table, and
to the last_name column in the attendees table.

To apply the filters, you must explicitly enable them at the Session
level:

Filter f = session.enableFilter("nameFilter");
f.setParameter("nameFilterParam", "Plenary");
List results = session.createQuery("from Event").list();

This code enables the named filter and then sets the filter parameter.
The results will only contain instances of Event with the name Plenary.
You can also enable multiple filters per session.

Filters are one of a handful of improvements made to object mapping.
The next section discusses a few of the more significant mappings.

Although the earlier versions of Hibernate handled the vast majority of
mapping requirements, in a few corner cases it was lacking, particu-
larly when Hibernate was introduced into a legacy database schema.
We’ll examine a few of the improvements in this section.

11.2.1 Multiple table mapping

One of the most significant improvements involves mapping a single
persistent class to multiple tables. Ideally, you won’t need to do this
with new applications, but it’s often required when you’re working
with legacy applications.

To support mapping a class to multiple tables, Hibernate adds the
<join> element. Using the <join> element is straightforward:

<join table="event_detail">
 <key column="event_id"/>

11.2 Mapping improvements
 <property name="startDate" type="date"/>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Mapping improvements 349
 <many-to-one class="Location" column="location_id"/>
 …
</join>

The following shows the <join> element in the context of the Event
class:

<class name="Event" table="events">
 …
 <join table="event_detail">
 <key column="event_id"/>
 <property name="startDate" type="date"/>
 <many-to-one class="Location" column="location_id"/>
 </join>
</class>

Notice the <key> element. You’ve seen this element every time the par-
ent object interacts with another table, typically with collections. In
this case, the join table has a foreign key to the parent Event class.

The <join> element can be used inside the class or subclass element,
and can contain the same elements as a class or subclass. You probably
won’t need to use the <join> element very often, but it can be useful in
isolated cases with legacy databases.

11.2.2 Discriminator formulas

Discriminators, which we discussed in chapter 3, are used to determine
the class type in an inheritance hierarchy. The discriminator value is
typically stored in its own column in the table, but this is possible only
if you’re starting a project with Hibernate, or you’re allowed to modify
an existing schema.

If you are unable to provide a specific column for the discriminator
value, you can use a snippet of SQL to determine the exact class type.
Most of the time, the SQL will be a CASE statement returning a value
to indicate the class type. The formula can be specified as an attribute

to the discriminator element, or as a child element:

Licensed to Tricia Fu <tricia.fu@gmail.com>

350 CHAPTER 11 What’s new in Hibernate 3
<discriminator type="string">
 <formula>
 case
 when class_type = 'network'
 then 'NetworkEvent'
 else 'Event'
 end
 </formula>
</discriminator>

<discriminator type="string" formula="…"/>

This example returns a string indicating the class type using a CASE
statement. The returned string is actually the name of the class.
Listing 11.1 shows a more complete mapping definition using derived
discriminator values.

Listing 11.1 Derived discriminators

<hibernate-mapping>
 <class name="Event" discriminator-value="event">
 <discriminator type="string">
 <formula>
 case class_type
 when 'event' then 'Event'
 when 'network' then 'NetworkEvent'
 when 'food' then 'FoodEvent'
 end
 </formula>
 </discriminator>
 …
 <subclass name="NetworkEvent"
 discriminator-value="network">
 …
 </subclass>
 <subclass name="FoodEvent"
 discriminator-value="food">
 …
 </subclass>
 </class>
</hibernate-mapping>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Mapping improvements 351
We still have a discriminator value, but it is derived from other values
rather than being concrete. Derived discriminator values come into
play with our next topic, union subclasses.

11.2.3 Union subclasses

When we discussed the various inheritance mapping strategies in
chapter 3, one strategy we didn’t discuss was the table-per-concrete-
class concept. We avoided it because it is complicated to implement in
Hibernate 2, and it does not support a number of polymorphic fea-
tures, such as polymorphic one-to-many and joins, as well as outer-
join fetching.

To address this shortcoming, Hibernate 3 introduces the new <union-
subclass> element. Classes mapped with this element use the table-
per-concrete-class strategy, but don’t have the same limitations on
polymorphic operations and joins.

The mapping for a union-subclass is shown here:

<hibernate-mapping>
 <class name="Event">
 <union-subclass name="NetworkEvent">
 …
 </union-subclass>
 <union-subclass name="FoodEvent">
 …
 </union-subclass>
 </class>
</hibernate-mapping>

Like the former table-per-concrete-class strategy, each subclass table
contains all of the property columns, including the inherited fields. The
primary difference is that the former method mapped all classes with
the class element, which didn’t preserve the inheritance hierarchy. The
<union-subclass> element makes the table-per-concrete-class strategy
much more usable and powerful.
Licensed to Tricia Fu <tricia.fu@gmail.com>

352 CHAPTER 11 What’s new in Hibernate 3
11.2.4 Property references

When you’re creating an association between two objects, Hibernate
assumes that the association will be from the primary key of one object
to the foreign key of the associated object. However, this isn’t always
the case, particularly in legacy database schema.

To address non-primary key associations, Hibernate 3 adds the prop-
erty-ref attribute to the association elements, including <many-to-one>
and <one-to-one>. This feature is best explained with an example.

Suppose you want to associate your Event class to the Location using
the name of the Location, rather than the id. In that case, the <many-to-
one> element in the Event definition would be

<many-to-one class="Location" property-ref="name"/>

The requirement on the referenced property is that it must be unique.
Otherwise, the Event class could be associated to multiple Locations.
Because of this limitation, the mapping definition for the Location class
has to be modified:

<property name="name" unique="true"/>

If your legacy database doesn’t require this feature, it’s better to avoid
it. Associations should be to primary keys whenever possible.

Most of the new features added to mapping definitions are designed to
ease integration for legacy databases. The next feature we cover,
dynamic classes, is designed to make development easier.

Throughout this book, we’ve discussed using Hibernate with domain
models composed of plain old Java objects (POJOs). We can refer to
domain models using POJOs as static domain models. The alternative
is to use a dynamic domain model. Instead of POJOs, dynamic domain
models use Maps to store properties and associations between persistent
Maps. Dynamic domain models are useful when the domain model

11.3 Dynamic classes
changes rapidly, or when the application is small.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Dynamic classes 353
The disadvantage of using dynamic domain models is that you lose the
explicit strong typing found in static domain models. For instance,
when you define a persistent object, you create getters and setters for
the various properties:

public class Event {
 private Long id;
 private String name;
 …
 public void setId(Long id) { this.id = id; }
 public Long getId() { return this.id; }
 public void setName(String name) { this.name = name; }
 public String getName() { return this.name; }
 …
}

If you try to set a java.lang.String as the id property, you’ll get a
compile-time error. On the other hand, the Map interface currently only
works with Objects, so you can set a java.lang.String as the value of
an id property and the error will not be found until you attempt to per-
sist the Map.

Despite the lack of strong typing, dynamic domain models can save
you a good deal of time and allow you to test new ideas quickly. To
declare a persistent Map, the new dynamic-class attribute has been cre-
ated. Here is an example of mapping a persistent Map:

<dynamic-class entity-name="Event" table="events">
 <id name="id" column="id" type="long">
 <generator class="native"/>
 </id>
 <property name="name" type="string" length="50"/>
 <property name="startDate" type="date"/>
 <many-to-one name="location" class="Location"
 column="location_id"/>
</dynamic-class>
Licensed to Tricia Fu <tricia.fu@gmail.com>

354 CHAPTER 11 What’s new in Hibernate 3
Once you’ve created the mapping document, using dynamic classes is
straightforward:

Map m = new HashMap();
m.put("name", "Dynamic Event");
m.put("startDate", new java.util.Date());
m.put("location", myLocation);
m.put("type", "Event");
Session s = factory.openSession();
s.save(m);
s.connection().commit();
s.flush();

Setting the type property in the Map tells Hibernate the entity name.
This is important because without the entity name, Hibernate won’t
know in which table to store the data. Once the Map is created and pop-
ulated, it is persisted like static JavaBeans. Retrieving a dynamic class
is simple:

Session s = factory.openSession();
Map m = s.get("Event", myEventId);

It is also possible to use dynamic classes as components. Dynamic
components are effectively the same as static components. Dynamic
classes can also be modified at runtime, providing a very powerful per-
sistence solution.

Java 5 (JDK version 1.5) introduced a new feature called annotations.
Annotations were introduced in Java Specification Request (JSR)
175. Essentially, annotations allow you to insert metadata into your
source files that can be interpreted by development tools and prepro-
cessors to lighten the deployment burden for developers. Annotations
are similar to XDoclet tags. The primary difference between XDoclet

11.4 Annotations
Licensed to Tricia Fu <tricia.fu@gmail.com>

Annotations 355
and annotations is that annotations aren’t embedded in JavaDoc com-
ments. Instead, annotations are actually part of the source code.

The set of annotations supported by Hibernate are taken from the
EJB3 specification, which are in draft as of this writing. Let’s look at
an example of the Event class from chapter 1, this time using EJB
annotations instead of a Hibernate mapping file (see listing 11.2).

Listing 11.2 Annotated Event class

@Entity
@Table(name="events")
public class Event {
 @Id(generate=GeneratorType.AUTO)
 @Column(name="uid")
 private Long id;

 @Basic
 @Column(length="100", unique="true")
 private String name;

 @Column(name="start_date")
 private Date startDate;

 private int duration;

 public void setId(Long id) { this.id = id; }
 @Column(name="uid",
 public Long getId() { return this.id; }
 public void setName(String name) { this.name = name; }
 public String getName() { return this.name; }
 public void setStartDate(Date startDate) {
 this.startDate = startDate;
 }
 public Date getStartDate() { return this.startDate; }
 public void setDuration(int duration) {
 this.duration = duration;
 }
 public int getDuration() { return this.duration; }
}

B
C

D
E

F
G

H

Licensed to Tricia Fu <tricia.fu@gmail.com>

356 CHAPTER 11 What’s new in Hibernate 3
Let’s take a closer look at this listing:

Declares this object as a persistent entity

Declares that instances of this persistent class should be persisted to
the events table

Declares the generator type should be AUTO

Declares that the column for the primary key is called uid

Declares that the name property should be persistent

Declares that the length of the name column should be 100 chars, and
that it should have a unique constraint

Declares that the column for the startDate property should be named
start_date

It’s pretty easy to understand this listing if you’ve used XDoclet.
However, some defaults are implied that require an explanation.
You’ll notice that the name property has a @Basic annotation. This
means that the object should be persisted as a basic property. The
@Basic annotation is optional and is implied if it’s not present.
Instead, you must intentionally declare fields as transient, using the
@Transient annotation.

Assuming you didn’t want the name property to be persisted to the
database, you’d simply have

 @Transient
 private String name;

in your source file.

The @Column annotations allow you to configure column-specific
attributes. The previous snippet demonstrates name, unique, and
length, but there are many more to provide fine-grained configuration.

B

C

D

E

F

G

H

Licensed to Tricia Fu <tricia.fu@gmail.com>

Stored procedures and SQL 357
Once you have annotated classes, you can use a special version of
Hibernate’s Configuration class, AnnotationConfiguration. Let’s look
at the differences in creating a SessionFactory for annotated classes:

SessionFactory factory = new AnnotationConfiguration().
 .addPackage("com.manning.hq.ch11").
 .addAnnotatedClass(Event.class).
 .buildSessionFactory();

It’s possible to use both annotated classes and standard mapping files
with AnnotationConfiguration.

The introduction of annotations begs the question: should you use
annotations or XDoclet? The answer depends on your environment
and what you’re doing. If you’re not using Java 5, you’ll need to use
XDoclet for source code metadata. XDoclet works fine with Java 2. If
you’re using XDoclet for more than just Hibernate, you may want to
stick with XDoclet until annotations exist for the other components,
like Struts, Spring, and WebWork. Of course, you can mix the two
approaches if that suits your application.

Hibernate’s support for annotations is still being developed. The cur-
rent development status can be found at www.hibernate.org/247.html.
Now let’s look at a frequently requested feature that shipped with
Hibernate 3: stored procedures.

One limitation of previous versions of Hibernate is the lack of support
for stored procedures. Another desirable feature is custom SQL state-
ments when objects are manipulated. Obviously, these two features are
closely related, since any stored procedure or custom SQL would need
to be declared in the mapping definitions.

Hibernate 3 provides the ability to specify custom SQL, including

11.5 Stored procedures and SQL
stored procedures, for various object operations, including inserting

Licensed to Tricia Fu <tricia.fu@gmail.com>

358 CHAPTER 11 What’s new in Hibernate 3
and updating objects and retrieving collections. We’ll spend some time
looking where this fits into the mapping definitions and how it can
impact your development.

To use custom SQL or stored procedures when inserting, updating,
and retrieving deleting objects, Hibernate 3 introduces the <sql-
insert>, <sql-update>, and <sql-delete> elements, respectively.
Where these elements fit into the mapping definition is shown in
listing 11.3.

Listing 11.3 Custom SQL in a mapping definition

<class name="Event" table="events">
 <id name="id" column="id" type="long">
 <generator class="native"/>
 </id>
 <property name="name" type="string"/>
 …
 <sql-insert>
 insert into events(name, id) values (?, ?)
 </sql-insert>
 <sql-update>
 update events set name=? where id=?
 </sql-update>
 <sql-delete>
 delete from events where id=?
 </sql-delete>
</class>

You’ll notice that the SQL statements have ? placeholders. The place-
holders are populated in the same order the property elements appear
in the mapping definition, with the id column always appearing last.
We hope that a future release will support named parameters in custom
SQL, since ensuring fields are in the correct order can be tedious.
Another thing to notice is the callable attribute. When callable is set
to true, the SQL must be a stored procedure installed on the database.

Another feature that can be quite powerful is the ability to define a

SQL statement that will be used whenever an instance of a persistent

Licensed to Tricia Fu <tricia.fu@gmail.com>

Persistence events 359
class is retrieved from the database by its primary key, like with Ses-
sion.get(…) or Session.load(…). The mapping definition for the
<loader> element is shown here:

<class name="Event" table="events">
 …
 <loader query-ref="events"/>
 …
</class>

The SQL query is defined at the Hibernate-mapping level:

<sql-query name="events">
 <return alias="e" class="Event"/>
 select name as {e.name}, id as {e.id} from events where id=?
</sql-query>

The <return> element defines the type of class returned and the alias of
the class attribute values in the query. For instance, the class
attribute declares that classes returned by the SQL query will be of
type Event.

Despite the relative power of using custom SQL, you should only need
to use it when you’re dealing with legacy databases. The SQL genera-
tion performed by Hibernate should be sufficient for the majority of
your persistence needs.

It’s often desirable to know when certain things happen in an applica-
tion, such as when objects are deleted or changed. In the past, this has
been accomplished with the Interceptor interface. The Interceptor
provides methods that are called when the Session instance performs
certain actions, such as flushing a dirty object. While Hibernate 3
doesn’t remove the Interceptor interface, it introduces an event archi-

11.6 Persistence events
tecture that can be much more granular than Interceptors.

Licensed to Tricia Fu <tricia.fu@gmail.com>

360 CHAPTER 11 What’s new in Hibernate 3
The event architecture follows the familiar EventLister/EventObject
pattern found throughout the Java SDK. Each of the operations per-
formed by the Session interface fire corresponding events, which can
be handled by the application. Some of the available event listeners are
shown in table 11.1.

Suppose you want to log whenever an instance of the Event class has
been loaded from the database. First, you must implement the Load-
EventListener:

public class MyLoadEventListener implements LoadEventListener {
 public Object onLoad(LoadEvent e,
 LoadEventListener.LoadType type)
 throws HibernateException {

Table 11.1 Persistence events

Session Action Associated Event

Automatic Session flush AutoFlushEvent

CopyEvent

Session.delete(…) DeleteEvent

When an object associated with a Session has
changed

DirtyCheckEvent

Session.evict(…) EvictEvent

Session.flush(…) FlushEvent

When collections are initially populated InitializeCollectionEvent

Session.load(…) or as the result of a find(…)
method

LoadEvent

Session.lock(…) LockEvent

Session.refresh(…) RefreshEvent

Session.replicate(…) ReplicateEvent

Session.save(…) and Session.saveOrUpdate(…) SaveEvent

Session.update(…) and Session.saveOrUpdate(…) UpdateEvent
 log.info("Object loaded: " + e.getEntityName() +

Licensed to Tricia Fu <tricia.fu@gmail.com>

Lazy properties 361
 "; id = " + e.getEntityId());
 }
}

Your next step is to tell Hibernate to use your listener class:

<hibernate-configuration>
 <session-factory>
 <listener type="load"
 class="com.manning.hq.ch11.MyLoadEventListener"/>
 …
 </session-factory>
</hibernate-configuration>

Note that you’re registering the listeners in the hibernate.cfg.xml file,
not a mapping definition. Now, when an Event instance is loaded, the
following is output to the log file:

INFO – Object loaded: Event; id = 4

Instead of just dumping something to the log file, you could have
implemented a security manager to make sure only certain users can
load Event instances. Another way to use events is for debugging. Sup-
pose you have a collection that isn’t getting populated as you expect.
You can create an implementation of InitializeCollectionEventLis-
tener to log when a given collection is initialized.

Events are an interesting way to debug and manage your Hibernate
applications. For example, your event-handling code could also inte-
grate with Java Management Extensions (JMX) to create an adminis-
trative console. In the next section, we’ll discuss another new feature in
Hibernate 3: lazy properties.

A common request from developers using Hibernate is the ability to

11.7 Lazy properties
lazily populate properties of persistent classes, similar to lazy

Licensed to Tricia Fu <tricia.fu@gmail.com>

362 CHAPTER 11 What’s new in Hibernate 3
collections. For instance, say you have an Event class that you want to
display to a user. Your display doesn’t include the start and end times
of the Event, so there’s no reason to populate it. This can be a powerful
feature, but you need to see how it has been implemented in compari-
son to lazy collections.

Lazy population is fairly easy with collections, since Hibernate can
transparently provide its own implementations of the collection inter-
faces. With properties, Hibernate can’t step in at runtime to intercept
each property because most of the properties are concrete classes, not
interfaces. Instead, Hibernate must perform some compile-time pro-
cessing, called instrumentation.

Instrumentation is the process of modifying bytecode to add additional
operations, typically for debugging or testing purposes. Hibernate
inserts instrumentation to intercept calls to lazy properties. When the
interception is made, the property is populated transparently.

To create a lazy property, simply add the lazy attribute to the <prop-
erty> element:

<property name="startDate" type="date" lazy="true"/>

Next, process your bytecode with an Ant task provided by Hibernate:

<taskdef name="instrument"
 classname="org.hibernate.tools.instrument.InstrumentTask"
 classpathref="project.class.path"/>
<instrument>
 <fileset dir="${build.dest}">
 <include name="**/*.class"/>
 </fileset>
</instrument>

The bytecode is modified to its current directory. If you’ve configured
your classes to have lazy properties but the classes haven’t had
instrumentation added, Hibernate transparently disables the feature
for that class.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Summary 363
While lazy properties require the extra step of adding instrumentation
to bytecode, they allow you to be very specific when retrieving objects.
The only thing to remember is that lazy properties, like lazy collections,
require the Session to be open when the properties are populated.

With Hibernate’s increasing adoption in enterprise applications, each
new release must add features and address problems found in previous
releases. Hibernate 3 is meant to address some of the shortcomings in
previous releases, particularly in working with legacy databases. Other
features, such as filters and dynamic classes, are designed to make
developing with Hibernate easier.

Dynamic classes allow you to persist simple Maps of values. One of the
main advantages of working with Maps is their flexibility: you can put
any object into a Map and persist it. You aren’t required to create
explicit property accessors, as with POJOs.

Another feature we examined, lazy properties, allows the developer to
specify properties that are not populated when the object is retrieved
from the database. We also looked at filters, which return objects that
pass certain criteria. Filters can be enabled or disabled at runtime, and
can be passed parameters.

The features in Hibernate 3 should make it easier to quickly man-
age object persistence for any Java application, including legacy
applications.

11.8 Summary
Licensed to Tricia Fu <tricia.fu@gmail.com>

Appendix
The complete Hibernate
mapping catalog

sing Hibernate in a project involves several disciplines. First, you have to
understand how to build your object model and map it correctly to a
database. Second, you need to understand how use the Hibernate library,

along with database transactions, to safely store and update your objects. Finally,
you must know the Hibernate Query Language (HQL) in order to efficiently
retrieve your objects. Recognizing how each of these disciplines works together
is the key to mastering Hibernate.

The intent of this appendix is to focus solely on the first discipline,
mapping an object model. Hibernate has an extremely rich variety of
mappings that it supports, and knowing which relationship to choose
and how to express it can be a bit overwhelming. Both the XDoclet and
Hibernate reference guides are fairly detailed, but we are aware of no
complete guide that combines examples using XDoclet tags side by side
with the mapping files. This appendix aims to fill that need. It doesn’t
cover the individual mapping attributes, which are already covered in
detail in the Hibernate reference manual.

This appendix is written in the form of a catalog of mappings. Our hope is
that developers will know the association they want, and will be able to
quickly look up that association and quickly copy the syntax into their
project. Like its inspirational parent, the catalog of patterns, this catalog
too has its own format, which we will lay out next.

U

364

Licensed to Tricia Fu <tricia.fu@gmail.com>

A sample association 365
Each mapping will usually start with a brief explanation of the relation-
ship, followed by a UML class model diagram, to illustrate the relation-
ship between the two classes, as shown in figure A.1.

For relationships that can be both unidirectional and bidirectional, the
first example will be unidirectional.

A.1.1 Unidirectional

The following sample Java code shows the persistent class(es):

package com.manning.hq.apdxA;
/**
 * @hibernate.class table="sample_class"
 */
public class ASampleClass {
 private Long id;

 /** @hibernate.id generator-class="native" */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
}

Here we show the package name, but most examples will not (to save
space). The following is the mapping file fragment itself, which is either
handwritten or generated:

<class name="com.manning.hq.apdxA.ASampleClass"
table="sample_class">

 <id name="id" column="id" type="java.lang.Long">
 <generator class="native"/>
 </id>
</class>

A.1 A sample association

ASampleClass Figure A.1
A sample class model
Licensed to Tricia Fu <tricia.fu@gmail.com>

366 APPENDIX The complete Hibernate mapping catalog
XDoclet is pretty verbose when generating files, which is irrelevant for
regular usage. For writing a book, it’s also a big waste of space. So in
most cases, the mapping file will have whitespace condensed and, for
clarity, some default XDoclet-generated properties may be stripped
out as well. If not necessary for the point of illustration, the identifier
field may be removed as well.

Table schema

To illustrate how the persistent objects will translate into database
tables, we’ll show a table schema to demonstrate how foreign keys link
together:

If an association has a bidirectional relationship, the following section
will detail that relationship.

A.1.2 Bidirectional

This section examines the modifications necessary to make the associa-
tion bidirectional and concludes the sample catalog entry. We begin
with the many-to-one association.

The most common object-to-object relationship is many-to-one (see
figure A.2). It can be either unidirectional or bidirectional.

A.2 Many-to-one

ASampleClass

id

Event Location

* 1

Figure A.2 Many-to-one relationship: Event to Location
Licensed to Tricia Fu <tricia.fu@gmail.com>

Many-to-one 367
A.2.1 Unidirectional

The following shows a many-to-one relationship: Event to Location:

public class Event implements Serializable {
 private Location location;
 /**
 * @hibernate.many-to-one column="location_id"
 */
 public Location getLocation() {
 return location;
 }
 public void setLocation(Location location) {
 this.location = location;
 }
}

public class Location implements Serializable{ }

The following illustrates a many-to-one mapping file:

<class name="com.manning.hq.apdxA.Event" table="events">
 <many-to-one name="location" column="location_id"
 class="com.manning.hq.apdxA.Location" />
</class>

Table schemas

A single foreign key column in the events table links the two objects:

A.2.2 Bidirectional

Making a bidirectional link from Location to Event involves creating a
one-to-many relationship, using either a Set or a Bag. Let’s assume a
simple Set in this case:

events

id location_id

locations

id
Licensed to Tricia Fu <tricia.fu@gmail.com>

368 APPENDIX The complete Hibernate mapping catalog
public class Location implements Serializable{
 private Set events = new LinkedHashSet();
 /**
 * @hibernate.set
 * @hibernate.collection-key column="location_id"
 * @hibernate.collection-one-to-many

class="com.manning.hq.apdxA.Event"
 * @return
 */
 public Set getEvents() { return events; }
 public void setEvents(Set events) { this.events = events; }
}

The desired mapping files (which the above XDoclet would generate)
should be similar to this:

<class name="com.manning.hq.apdxA.Location" table="locations">
 <set name="events">
 <key column="location_id"/>
 <one-to-many class="com.manning.hq.apdxA.Event"/>
 </set>
</class>

The one-to-one association (see figure A.3) is not as common as its sim-
ilar many-to-one cousin, mainly because database semantics don’t truly
allow for it. There are two strategies: identical primary keys or unique
foreign keys. (A foreign key always implies a many-to-one from at least
one end.) These relationships need to be bidirectional to maintain the
identical keys.

A.3.1 Identical primary keys

Here the relationship uses a special “foreign” key generation algorithm:

A.3 One-to-one
Licensed to Tricia Fu <tricia.fu@gmail.com>

One-to-one 369
/** @hibernate.class table="keynote_speakers" */
public class KeyNoteSpeaker implements Serializable {
 private Long id;
 private Event event;

 /**
 * @hibernate.id generator-class="foreign"
 * @hibernate.generator-param name="property" value="event"
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 /**
 * @hibernate.one-to-one constrained="true"
 */
 public Event getEvent() { return event; }
 public void setEvent(Event event) { this.event = event; }
}

/** @hibernate.class table="events" */
public class Event implements Serializable {
 private KeyNoteSpeaker speaker;

 /** @hibernate.one-to-one */
 public KeyNoteSpeaker getSpeaker() { return speaker; }
 public void setSpeaker(KeyNoteSpeaker speaker) {
 this.speaker = speaker;
 }
}

In the following code, KeyNoteSpeaker is the child class whose id is
dependent on (and identical to) the parent Event:

Event KeyNoteSpeaker

1 1

Figure A.3 One-to-one relationship: Event to KeyNoteSpeaker
Licensed to Tricia Fu <tricia.fu@gmail.com>

370 APPENDIX The complete Hibernate mapping catalog
<class name="com.manning.hq.apdxA.KeyNoteSpeaker"
table="keynote_speakers">

 <id name="id" column="id" type="java.lang.Long">
 <generator class="foreign">
 <param name="property">event</param>
 </generator>
 </id>
 <one-to-one name="event"
 class="com.manning.hq.apdxA.Event"
 constrained="true" />
</class>

<class name="com.manning.hq.apdxA.Event" table="events">
 <one-to-one name="speaker"
 class="com.manning.hq.apdxA.KeyNoteSpeaker"
 constrained="false" />
</class>

Table schema

Since events.id and keynote_speakers.id must match, there is no
need for a foreign key. This works well in many cases, except when
you’re using native key generation, which means the database is man-
aging the key generation and foreign key violations become possible. In
that case, you can try to use the next one-to-one strategy.

A.3.2 Foreign key one-to-one

The foreign key one-to-one is really a constrained many-to-one rela-
tionship, where one object is a many-to-one relationship to the other,
using a unique foreign key to the other object. Unlike the primary key
one-to-one, it can but does not need to be bidirectional.

Unidirectional

events

id

keynote_speakers

id
The following shows an Event with a foreign one-to-one relationship:

Licensed to Tricia Fu <tricia.fu@gmail.com>

One-to-one 371
public class Event implements Serializable {
 private KeyNoteSpeaker speaker;

 /**
 * @hibernate.many-to-one column="keynote_speaker_id"
 * unique="true"
 */
 public KeyNoteSpeaker getSpeaker() { return speaker; }
 public void setSpeaker(KeyNoteSpeaker speaker) {
 this.speaker = speaker;
 }
}

Because the keynote_speaker_id is unique, no other event can be asso-
ciated with a single KeyNoteSpeaker. Here’s the mapping file for this
relationship:

<class name="com.manning.hq.apdxA.Event" table="events">
 <many-to-one name="keyNoteSpeaker"
 class="com.manning.hq.apdxA.KeyNoteSpeaker"
 column="keynote_speaker_id" unique="true" />
</class>

Note that as of XDoclet 1.2.3, a bug results in the generation of multi-
ple unique="true" attributes. Until it’s fixed, you can just ignore that
attribute or handwrite the mapping file.

Table schema

Since there is now a foreign key link, a new column must be added to
the events table.

events

id keynote_speaker_id

keynote_speakers

id
Licensed to Tricia Fu <tricia.fu@gmail.com>

372 APPENDIX The complete Hibernate mapping catalog
Bidirectional

The Event-to-KeyNoteSpeaker association can be made bidirectional by
adding an event field to KeyNoteSpeaker and mapping it to point back
to Event’s keyNoteSpeaker field:

public class KeyNoteSpeaker implements Serializable {
 private Long id;
 private Event event;

 /**
 * @hibernate.id generator-class="native"
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 /**
 * @hibernate.one-to-one property-ref="keyNoteSpeaker"
 */
 public Event getEvent() { return event; }
 public void setEvent(Event event) { this.event = event; }
}

Note that KeyNoteSpeaker can also use a normal id generator now
instead of the foreign one that we saw before. The newly generated
KeyNoteSpeaker.hbm.xml file will contain the following:

<class name="com.manning.hq.apdxA.KeyNoteSpeaker"
 table="keynote_speakers">
 <id name="id" column="id" type="java.lang.Long">
 <generator class="native"/>
 </id>
 <one-to-one name="event" class="com.manning.hq.apdxA.Event"
 constrained="false" property-ref="keyNoteSpeaker" />
</class>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Components 373
The basic component is a one-to-one relationship between an entity
and a child value object. The value object’s data is contained with the
parent table, and has no identity of its own. A component is typically
unidirectional, but if necessary the component can have a reference to
its parent class, as shown in figure A.4.

A.4.1 Unidirectional

A component has the property information in the component (Address)
and the component relationship detailed in the parent entity object:

/**
 * @hibernate.class table="locations"
 */
public class Location implements Serializable{
 private Long id;
 private Address address = new Address();

 /**
 * @hibernate.id generator-class="native" column="id"
 * @return
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 /**
 * @hibernate.component
 */
 public Address getAddress() { return address; }

A.4 Components

Location Address

1 1

Figure A.4 Component: Location to Address
 public void setAddress(Address address) {
 this.address = address;

Licensed to Tricia Fu <tricia.fu@gmail.com>

374 APPENDIX The complete Hibernate mapping catalog
 }
}

/** No hibernate.class tag or identity field needed. */
public class Address implements Serializable {
 /**
 * A sample property, the name of a city.
 * @hibernate.property column="city"
 */
 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }
}

The final result, either generated via XDoclet or written by hand, is a
single mapping single file, the entity’s hbm.xml file. For this example, it
looks like this:

<class name="com.manning.hq.apdxA.Location" table="locations">
 <id name="id" column="id" type="java.lang.Long">
 <generator class="native"/>
 </id>
 <component name="address" class="com.manning.hq.apdxA.Address">
 <property name="city" type="java.lang.String"
 column="city" />
 </component>
</class>

Table schema

There’s only a single table, since the component, Address, is bound by
its parent, Location.

A.4.2 Bidirectional

To make a component bidirectional, you must add a field that refers

locations

id city
to the parent object. The component mapping then gets a <parent>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Set: one-to-many 375
element, which refers back to the original object. As of XDoclet 1.2.2,
there is a @hibernate.parent tag, which generates the <parent> ele-
ment. Specifying it on the location property binds the Location to
the Address component, making the relationship bidirectional, as
shown here:

public class Address implements Serializable {
 /**
 * @hibernate.parent
 */
 public Location getLocation() { return location; }
 public void setLocation(Location location) {
 this.location = location;
 }
}

The following is the mapping file for the Location and its contained
Address component, which has a link back to the parent Location:

<class name="com.manning.hq.apdxA.Location" table="locations">
 <component name="address" class="com.manning.hq.apdxA.Address">
 <parent name="location"/>
 <!-- Other properties omitted -->
 </component>
</class>

Note that for XDoclet to generate the Location.hbm.xml correctly, you
must specify the location field first before all the other properties on
the Address object. Otherwise, the XDoclet will generate an invalid
hbm.xml file (according to the DTD). The <parent> element has to
come first, before the <property> elements.

There are many flavors of collections, the most basic and common of

A.5 Set: one-to-many
which is the one-to-many set (see figure A.5). The basic contract of

Licensed to Tricia Fu <tricia.fu@gmail.com>

376 APPENDIX The complete Hibernate mapping catalog
java.util.Set is that every element must be unique but there are no
guarantees on the order. In Hibernate, each element of the one-to-
many set is linked back to the parent object via a foreign key. Hiber-
nate allows you to sort sets in memory, using a naturally sorted collec-
tion or at query time using an order-by clause.

A.5.1 Unidirectional

In a unidirectional set, the parent object has a collection, but the
objects in the collection have no parent object field:

public class Event implements Serializable {
 private Set speakers = new LinkedHashSet();
 /**
 * @hibernate.set
 * @hibernate.collection-key column="event_id"
 * @hibernate.collection-one-to-many
 * class="com.manning.hq.apdxA.Speaker"
 */
 public Set getSpeakers() { return speakers; }
 public void setSpeakers(Set speakers) {
 this.speakers = speakers;
 }
}

The speaker table will have an event_id column, which will link each
Speaker instance to a single Event. The resulting mapping fragment
should look like this:

<class name="com.manning.hq.apdxA.Event" table="events">

Event Speaker

1 *

Figure A.5 One-to-many set: Event to Speaker
 <set name="speakers">

Licensed to Tricia Fu <tricia.fu@gmail.com>

Set: one-to-many 377
 <key column="event_id" />
 <one-to-many class="com.manning.hq.apdxA.Speaker" />
 </set>
</class>

Table schema

Each speaker needs its foreign key back to the events table:

A.5.2 Bidirectional

The opposite end of a bidirectional one-to-many association is a many-
to-one on the object in the collection. In this case, the Speaker object
would have an Event field, which points back to the Event object.
Here’s the modified Speaker class with that field:

public class SpeakerBidirectional implements Serializable {
 private Event event;
 /**
 * @hibernate.many-to-one column="event_id"
 */
 public Event getEvent() { return event; }
 public void setEvent(Event event) { this.event = event; }
}

Note that the many-to-one column (event_id) must match the one
declared column on the Event.speakers field. Here’s what the mapping
fragment will look like:

<class name="com.manning.hq.apdxA.Speaker" table="speakers">
 <many-to-one name="event"
 class="com.manning.hq.apdxA.Event"
 column="event_id" />

speakers

id event_id

events

id
</class>

Licensed to Tricia Fu <tricia.fu@gmail.com>

378 APPENDIX The complete Hibernate mapping catalog
Like all collections, Sets can handle both one-to-many and many-to-
many associations. From the mapping file perspective there is not much
difference, with only one element (or XDoclet tag) being swapped out.
From the database perspective, it’s considerably different, since it
requires the use of an association table to hold the foreign keys. When
persisting and querying, clients of the model class don’t need to worry
about this extra table, though, because Hibernate manages it under the
covers. But you do need to consider this table when writing the map-
pings. Many-to-many Sets can be bidirectional; see figure A.6.

A.6.1 Unidirectional

The unidirectional set consists of a Set field on one of the objects. In
this case, our Event has a many-to-many relationship with Attendees.
Attendees can go to many Events, and each Event has many Attendees:

public class Event implements Serializable {
 private Set speakers = new LinkedHashSet();
 /**
 * @hibernate.set table="as_event_to_attendee"
 * @hibernate.collection-key column="event_id"
 * @hibernate.collection-many-to-many
 * class="com.manning.hq.apdxA.Attendee"
 * column="attendee_id"
 */
 public Set getAttendees() { return attendees; }
 public void setAttendees(Set attendees) {
 this.attendees = attendees;
 }
}

A.6 Set: many-to-many

Event Attendee

* *

Figure A.6 Many-to-many set: Event to Attendee
Licensed to Tricia Fu <tricia.fu@gmail.com>

Set: many-to-many 379
As you can see, the <one-to-many> tag has been replaced with a <many-
to-many> tag. In addition, the event_id is not stored in the attendee
table, but in an association table, here called as_event_to_attendee.1

The mapping file looks like the following:

<class name="com.manning.hq.apdxA.Event" table=”events”>
 <set name="attendees" table="as_event_to_speaker">
 <key column="event_id" />
 <many-to-many class="com.manning.hq.apdxA.Attendee"
 column="attendee_id" />
 </set>
</class>

Table schema

For a many-to-many relationship, three tables are needed: one table for
each of the entities, Event and Attendee, and one association table for
the many-to-many relationship.

A.6.2 Bidirectional

The bidirectional many-to-many Set puts another set on the object on
the opposite end. In our current example, the Attendee would have a
Set of Events. A bidirectional many-to-many set is going to result in
quite a few queries when loading, especially if the number of Events
and Attendees is large. So do some performance testing with the
show_sql parameter on to check it. The following code is the modified
Attendee with its Set of Events:

1 The naming convention here of the association table, using as_ for a prefix, then the name of
the tables being joined here, is strictly ours. We find it helps to distinguish between entity

events

id

attendees

id

as_event_to_speaker

event_id attendee_id
tables as the strictly associative ones.

Licensed to Tricia Fu <tricia.fu@gmail.com>

380 APPENDIX The complete Hibernate mapping catalog
/**
 * @hibernate.class table="attendees"
 */
public class Attendee implements Serializable {
 private Set events = new LinkedHashSet();
 /**
 * @hibernate.set inverse="true" table="as_event_to_attendee"
 * @hibernate.collection-key column="attendee_id"
 * @hibernate.collection-many-to-many

class="com.manning.hq.apdxA.Event" column="event_id"
 */
 public Set getEvents() { return events; }
 public void setEvents(Set events) { this.events = events; }
}

When dealing with a bidirectional many-to-many relationship, you
have to mark one end of it as inverse. Which end you mark is your
choice. By marking the set of Events on Attendee as inverse, you’re
telling Hibernate that the Event object is responsible for maintaining
the relationship. Any changes made to the inverse end that aren’t also
made to the non-inverse end won’t be saved.

The above code is virtually identical to that for the Event.attendees
field, except that the columns are reversed. The attendee_id is now the
key column and the outward foreign key is now event_id. Here’s what
the Attendee.hbm.xml file will contain:

<class name="com.manning.hq.apdxA.Attendee" table="attendees">
 <set name="events" table="as_event_to_attendee" inverse=”true”>
 <key column="attendee_id"/>
 <many-to-many
 class="com.manning.hq.apdxA.Event"
 column="event_id" />
 </set>

Most of the remaining collection types will follow this pattern, allowing

both one-to-many and many-to-many associations.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Lists 381
Hibernate allows you to store Lists of entities, using a <list> element
in the mapping file. The contract of java.util.List is that it maintains
the order of insertion but has no guarantees that it won’t contain dupli-
cate elements. For Hibernate, this means it needs to store the index of
each element in the database in its own column, which must be an inte-
ger type.

Hibernate doesn’t support Lists as the “many” side of a bidirectional
relationship. You have to use a set or bag if you want to take advantage
of Hibernate’s bidirectional features. Figure A.7 shows a diagram of
the relationship between Speaker and EventSession.

A.7.1 Unidirectional one-to-many list

In our example, a single speaker will have multiple sessions that he is
speaking at, within a single event. It’s important to keep the sessions in
order (since the Speaker has to perform at them in order). So our
speaker will have a List of sessions. The Speaker looks like this:

public class Speaker implements Serializable {
 private List sessions = new ArrayList();

 /**
 * @hibernate.list
 * @hibernate.collection-key column="speaker_id"
 * @hibernate.collection-index column="session_index"
 * @hibernate.collection-one-to-many

class="com.manning.hq.apdxA.EventSession"

A.7 Lists

Speaker EventSession

1 *

Figure A.7 One-to-many List: Speaker to EventSession
 */

Licensed to Tricia Fu <tricia.fu@gmail.com>

382 APPENDIX The complete Hibernate mapping catalog
 public List getSessions() { return sessions; }
 public void setSessions(List sessions)
{this.sessions = sessions;}
}

As you can see, this looks very much like a set mapping. The main dif-
ference is the addition of the @hibernate.collection-index tag, which
specifies that the index column maintains the order of the sessions. In
this case, the session_index column will exist in the event_session
table. The mapping document looks like this:

<class name="com.manning.hq.apdxA.Speaker" table="speakers">
 <list name="sessions">
 <key column="speaker_id"/>
 <index column="session_index" />
 <one-to-many class="com.manning.hq.apdxA.EventSession" />
 </list>
</class>

Table schema

The event_sessions table holds a foreign key back to the speakers
table. It also has a column, session_index, that holds the order of the
EventSessions within the list.

A.7.2 List of simple values

A List doesn’t need to store entities; it can actually store simple values
like Strings or Integers. To expand the object model, let’s say that
each Speaker has a list of telephone numbers, which you want to store
as Strings. Simple values can’t be bidirectional:

event_sessions

id speaker_id session_index

speakers

id
Licensed to Tricia Fu <tricia.fu@gmail.com>

Lists 383
public class Speaker implements Serializable {
 /**
 * @hibernate.list table="phone_numbers"
 * @hibernate.collection-key column="event_id"
 * @hibernate.collection-index column="phone_index"
 * @hibernate.collection-element type="string"
 * column="phone_number"
 */
 public List getPhoneNumbers() { return phoneNumbers; }
 public void setPhoneNumbers(List phoneNumbers) {
 this.phoneNumbers = phoneNumbers;
 }
}

Here you see a new XDoclet tag, @hibernate.collection-element,
which declares that each value of the List is a String type. The result-
ing Speaker.hbm.xml looks like this:

<class name="com.manning.hq.apdxA.Speaker" table="speakers"
 <list name="phoneNumbers" table="phone_numbers">
 <key column="speaker_id"/>
 <index column="phone_index" />
 <element column="phone_number" type="string" />
 </list>
</class>

The <element> corresponds to the @hibernate.collection-element you
saw in the previous listing. Now you can add phone numbers to the
Speaker like so:

Speaker speaker = new Speaker();
speaker.getPhoneNumbers().add("867-5309");

Table schema

The phone_numbers table holds a foreign key back to the speakers

table. It also has a column, phone_index, that holds the order of the

Licensed to Tricia Fu <tricia.fu@gmail.com>

384 APPENDIX The complete Hibernate mapping catalog
Strings within the list. The phone_numbers table doesn’t represent an
actual PhoneNumber entity but is just a collection of ordered strings.

A.7.3 Other lists

In addition to the List associations we’ve covered, these associations
are possible:

❂ Unidirectional many-to-many lists
❂ Lists of components

Hibernate supports the use of Maps. The contract associated with a
java.util.Map is that elements are stored and accessed (indexed) by a
unique key, as opposed to order index (like a List). The values stored
in the Map can be simple objects (like a String), an entity (like a Loca-
tion), or a component (like Address). The index can be a simple value,
entity, or component as well. Let’s consider the entity first. Like
Lists, Maps cannot be bidirectional. Figure A.8 shows a diagram of the
relationship between Event and Room.

A.8.1 One-to-many entity maps

In our next example, the Event has a number of rooms. Each room is

A.8 Maps

phone_numbers

speaker_id phone_index phone_number

speakers

id

Event Room

*1

Figure A.8 One-to-many Map: Event to Room
its own unique entity, with a name and identity. For each event, the

Licensed to Tricia Fu <tricia.fu@gmail.com>

Maps 385
rooms are stored with a color code, such as “red”, “blue”, or “green”.
So Event will have a Map of Rooms, where the key is the color and the
value is the Room:

public class Event implements Serializable {
 private Map rooms = new LinkedHashMap();
 /**
 * @hibernate.map
 * @hibernate.collection-key column="event_id"
 * @hibernate.collection-index
 * column="room_color_code" type="string"
 * @hibernate.collection-one-to-many

class="com.manning.hq.apdxA.Room"
 */
 public Map getRooms() { return rooms; }
 public void setRooms(Map rooms) { this.rooms = rooms; }
}

The key difference between a Map and a List is the need to specify the
index type. In this case, the room color code is a simple string type.
Since it’s a one-to-many map, the event_id and room_color_code will
go in the rooms table itself. Here’s what the resulting mapping docu-
ment will look like:

<class name="com.manning.hq.apdxA.Event">
 <map name="rooms">
 <key column="event_id"/>
 <index column="room_color_code" type="string" />
 <one-to-many class="com.manning.hq.apdxA.Room" />
 </map>
</class>

When you add new Rooms to an Event, you’ll need to specify a unique
color (for each event). Two different events could both have a “green”
room, for example. The SchemaExport task will be an extreme help in
this example, since it will make sure that the correct database con-

straints are generated.

Licensed to Tricia Fu <tricia.fu@gmail.com>

386 APPENDIX The complete Hibernate mapping catalog
Table schema

The rooms table holds a foreign key back to the events table. It also
has a column, room_color_code, which uniquely identifies the room
within the map. Because rooms are entities, they also have their own
id column.

A.8.2 Many-to-many entity maps

Maps may also have a many-to-many association with an entity (see
figure A.9). In this case, we could easily alter the Room relationship to
fit it. This would involve specifying an association table, as well as
replacing the one-to-many with a many-to-many. Here’s what that
class looks like:

public class Event implements Serializable {
 private Map sharedRooms = new LinkedHashMap();
 /**
 * @hibernate.map table="as_event_to_rooms"
 * @hibernate.collection-key column="event_id"
 * @hibernate.collection-index
 * column="room_color_code" type="string"
 * @hibernate.collection-many-to-many
 * class="com.manning.hq.apdxA.Room" column="room_id"
 */
 public Map getSharedRooms() { return sharedRooms; }
 public void setSharedRooms(Map sharedRooms) {
 this.sharedRooms = sharedRooms; }
}

rooms

id event_id room_color_code

events

id

Event Room

**

Figure A.9 Many-to-many entity map: Event to Room
Licensed to Tricia Fu <tricia.fu@gmail.com>

Maps 387
Here you’re adding another field to Event, called sharedRooms, which
is a many-to-many relationship with Rooms. The mapping file looks
like this:

<class name="com.manning.hq.apdxA.Event">
 <map name="rooms" table="as_event_to_rooms">
 <key column="event_id"/>
 <index column="room_color_code" type="string" />
 <many-to-many class="com.manning.hq.apdxA.Room"
 column="room_id" />
 </map>
</class>

Table schema

As with all many-to-many relationships, you have an association table
with dual foreign keys, which here also holds the map key:
room_color_code.

A.8.3 Map of components

Maps do not have to contain entities; like any other Hibernate collec-
tion, they can hold simple values (like Strings) or component objects.
Let’s consider an example where our Location has more than just two
addresses but potentially a large number of them. You’ll add a Map field
to the Location object, which will hold Address components, with a key
denoting the type of address (Billing, Mailing, Home Office, etc.).

Unlike components that are used via the @hibernate.component tag and
<component> element, a collection of components needs its own table.

as_event_to_rooms

room_id event_id room_color_code

events

id

rooms

id
This allows any number of components to be mapped back to the

Licensed to Tricia Fu <tricia.fu@gmail.com>

388 APPENDIX The complete Hibernate mapping catalog
parent entity. You’ll also see a new element, <composite-element>,
which will be used instead of <one-to-many> or <many-to-many>. Col-
lections of components are always one-to-many because they are cou-
pled to their parent entity:

public class Location implements Serializable{
 private Map addresses = new LinkedHashMap();

 /**
 * @hibernate.map table="addresses"
 * @hibernate.collection-key column="location_id"
 * @hibernate.collection-index column="address_type"
 type="string"
 * @hibernate.collection-composite-element
 * class="com.manning.hq.apdxA.Address"
 */
 public Map getAddresses() { return addresses; }
 public void setAddresses(Map addresses) {
 this.addresses = addresses;
 }
}

In this example, you can see the new tag, @hibernate.collection-
composite-element. Here it defines the value of each map entry as an
Address component. If you use XDoclet, the generated mapping file
should pull the Address properties in the <map> element:

<class name="com.manning.hq.apdxA.Location" table="locations">
 <map name="addresses" table="addresses">
 <key column="location_id"/>
 <index column="address_type" type="string"/>
 <composite-element class="com.manning.hq.apdxA.Address">
 <property name="streetAddress"
 type="java.lang.String" column="street_address" />
 </composite-element>
 </map>
</class>
Licensed to Tricia Fu <tricia.fu@gmail.com>

Maps 389
Table schema

The addresses table holds the foreign key back to the locations table,
location_id. The address_type is the unique identifier within the map.

A.8.4 Maps with entity keys

A Map object allows the use of any object as a key. The only constraints
are that it must override the equals() and hashCode() methods of the
object. In the case of a Hibernate entity, the easiest way to define
equals() and hashCode() is to use the primary key.2 Instead of using an
unsorted Set of Speakers, you want to store them according to a Room
object. Since you want to use Room as a key, you must override both
methods as well:

public class Event implements Serializable {
 private Map speakersByRoom = new LinkedHashMap();

 /**
 * @hibernate.map table="as_event_to_speakers_by_room"
 * @hibernate.collection-key column="event_id"
 * @hibernate.index-many-to-many column="room_id"
 * class="com.manning.hq.apdxA.Room"
 * @hibernate.collection-many-to-many
 * class="com.manning.hq.apdxA.Speaker"
 * column="speaker_id"
 */
 public Map getSpeakersByRoom() { return speakersByRoom; }
 public void setSpeakersByRoom(Map speakersByRoom) {
 this.speakersByRoom = speakersByRoom;

2 The strategy of using the primary key as the foundation for equality, while simple, does
have its share of problems, since Hibernate typically generates the keys. For an in-depth
discussion of this issues, see Christian Bauer and Gavin King’s Hibernate in Action (Man-

addresses

location_id address_type streetAddress

locations

id
ning, 2004).

Licensed to Tricia Fu <tricia.fu@gmail.com>

390 APPENDIX The complete Hibernate mapping catalog
 }
}

public class Room implements Serializable {
 private Long id;
 public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof Room)) return false;
 final Room room = (Room) o;
 if (id != null ? !id.equals(room.id) : room.id != null) {
 return false;
 }
 return true;
 }

 public int hashCode() {
 return (id != null ? id.hashCode() : 0);
 }
}

Here you’ve implemented the two necessary methods on Room so that
you can use it as a key in your map. In addition, to specify a Room object
as a key, you’ve used a new tag, @hibernate.index-many-to-many.
Notice that it breaks somewhat with the XDoclet naming convention;
it should have probably been called @hibernate-collection-index-
many-to-many, but that’s a mouthful. The resulting Event.hbm.xml file
looks like this:

<class name="com.manning.hq.apdxA.Event" table="events">
 <map name="speakersByRoom"
 table="as_event_to_speakers_by_room">
 <key column="event_id"/>
 <index-many-to-many class="com.manning.hq.apdxA.Room"
 column="room_id" />
 <many-to-many class="com.manning.hq.apdxA.Speaker"
 column="speaker_id" />
 </map>
</class>

That’s how you define this relationship, which is a pretty complicated

one. You might never need a relationship this rich in your object

Licensed to Tricia Fu <tricia.fu@gmail.com>

Maps 391
model, but it’s nice to know it can be done, should you require it. To
illustrate how you might populate it, here’s a short code sample to show
it in action:

Event event = new Event();
Room room1 = new Room();
Room room2 = new Room();
Speaker speaker1 = new Speaker();
Speaker speaker2 = new Speaker();

session.save(event);
session.save(room1);
session.save(room2);
session.save(speaker1);
session.save(speaker2);

event.getSpeakersByRoom().put(room1, speaker1);
event.getSpeakersByRoom().put(room2, speaker2);
session1.flush();

You’ve created an event, a few rooms, and a few speakers. Then save
all of them, which is important especially for the Room objects, so they
won’t have null ids. Next you put the speakers into the map using the
Rooms as keys.

Table schema

This fairly complicated relationship has three entity tables, with an
association table that links the three together. The room is actually the
unique map key for the collections of speakers.

as_event_to_speakers_by_room

event_id speaker_id room_id

rooms

id

events

id

speakers

id
Licensed to Tricia Fu <tricia.fu@gmail.com>

392 APPENDIX The complete Hibernate mapping catalog
A.8.5 Other maps

Maps offer the most variety of association possibilities, not all of which
we can cover here. As long as you know they are possible, it should be
fairly easy to mix and match the collection tags/elements you’ve seen so
far to build the association you want. Here’s a list of other relationships
that are possible but that we don’t have space to cover:

❂ Maps with component keys and entity values (one-to-many or
many-to-many)

❂ Maps with entity keys and component values
❂ Maps with entity keys and simple values
❂ Maps with simple keys and simple values

Hibernate supports the use of arrays to store entities, components, and
simple values. The two elements that it uses are <array> and <primi-
tive-array>, the latter used only if non-object simple values are being
stored (like int, long, or boolean).

A.9.1 Entity arrays

Suppose your Event had several speakers, featured as part of a round-
table discussion panel. You might store them as an Array on the Event
class, in a one-to-many relationship, as shown in figure A.10.

The Event class looks like this:

public class Event implements Serializable {

A.9 Arrays

Event Speaker

1 *

Figure A.10 One-to-many array: Event to Speaker
 private Speaker[] featuredSpeakers = new Speaker[0];

Licensed to Tricia Fu <tricia.fu@gmail.com>

Arrays 393
 /**
 * @hibernate.array
 * @hibernate.collection-key column="event_id_featured"
 * @hibernate.collection-index column="featured_speaker_order"
 * @hibernate.collection-one-to-many
 * class="com.manning.hq.apdxA.Speaker"
 */
 public Speaker[] getFeaturedSpeakers() {
 return featuredSpeakers;
 }
 public void setFeaturedSpeakers(Speaker[] featuredSpeakers) {
 this.featuredSpeakers = featuredSpeakers;
 }
}

Unfortunately you still need to specify the class on the @hiber-
nate.collection-one-to-many tag, because XDoclet doesn’t attempt to
guess (even though it probably could from the return type):

<class name="com.manning.hq.apdxA.Event" table="events">
 <array name="featuredSpeakers">
 <key column="event_id_featured"/>
 <index column="featured_speaker_order" />
 <one-to-many class="com.manning.hq.apdxA.Speaker" />
 </array>
</class>

Table schema

Arrays of entities and lists of entities are pretty much identical in usage
and database schemas. There is a foreign key back to the parent table
and a column that maintains the order.

Speakers

id event_id_featured featured_speaker_order

events

id
Licensed to Tricia Fu <tricia.fu@gmail.com>

394 APPENDIX The complete Hibernate mapping catalog
A.9.2 Primitive arrays

A regular <array> can be used to store simple value objects, but a spe-
cial mapping is needed to store primitive values, like an int or long.
Let’s expand our object model by adding an array of room numbers,
which are still available for guests to use. Rather than store entire room
objects, you’ll just store the room number itself. Here’s what the Event
class looks like:

public class Event implements Serializable {
 /**
 * @hibernate.primitive-array table="available_rooms"
 * @hibernate.collection-key column="event_id"
 * @hibernate.collection-index column="room_order"
 * @hibernate.collection-element column="room_number"
 * type="integer"
 */
 public int[] getAvailableRooms() { return availableRooms; }
 public void setAvailableRooms(int[] availableRooms) {
 this.availableRooms = availableRooms;
 }
}

The @hibernate.primitive-array tag will be converted to a <primi-
tive-array> element by XDoclet. A collection table is also needed
here, available_rooms, to store these values. The Event.hbm.xml looks
like this:

<class name="com.manning.hq.apdxA.Event" table="events">
 <primitive-array name="availableRooms"
 table="available_rooms" >
 <key column="event_id" />
 <index column="room_order" />
 <element column="room_number" type="integer" />
 </primitive-array>
</class>
Here’s a code sample to set the room numbers that are available:

Licensed to Tricia Fu <tricia.fu@gmail.com>

Bags 395
Event event = new Event();
int[] rooms = new int[]{1, 200, 500};
event.setAvailableRooms(rooms);
session.save(event);

Table schema

The available_rooms table doesn’t represent an entity, but is just an
array of integers. There is no primary key, but there is a foreign key
back to the events table. There is also a column for order, as well as the
actual integer value.

A.9.3 Other arrays

Samples of other arrays include

❂ Arrays of components
❂ Array of simple value objects (String, Integer, etc.)
❂ Arrays of entities, many-to-many

The concept of a Bag may not be familiar to most Java developers,
because there is no java.util.Bag interface in the Java core collections
library. The contract of a Bag is a collection, which does not guarantee
order and can contain the same object multiple times. In Hibernate, if
you really want one, you can use either a List or a Collection to “fake”
a Bag. Then you define a <bag> element, just like any other collection.

In Hibernate, Bags are very flexible, much like Sets, in that they allow
bidirectional one-to-many and bidirectional many-to-many associa-

A.10 Bags

available_rooms

event_id room_numberroom_order

events

id
tions, which Lists and Sets do not. As with Sets, you can specify an

Licensed to Tricia Fu <tricia.fu@gmail.com>

396 APPENDIX The complete Hibernate mapping catalog
order-by clause but no in-memory sort. This makes sense because
there is no SortedBag interface, whereas a SortedSet interface exists.

A.10.1 Bags of entities: one-to-many, unidirectional

The simplest Bag we can show you is one that holds entity objects in a
one-to-many association. To demonstrate it, let’s rework our original
Set of Speakers into a Bag of Speakers:

public class Event implements Serializable {
 private List bagOfSpeakers = new ArrayList();

 /**
 * @hibernate.bag
 * @hibernate.collection-key column="event_id_bag"
 * @hibernate.collection-one-to-many
 * class="com.manning.hq.apdxA.Speaker"
 */
 public List getBagOfSpeakers() { return bagOfSpeakers; }
 public void setBagOfSpeakers(List bagOfSpeakers) {
 this.bagOfSpeakers = bagOfSpeakers;
 }
}

Note that while you’re using a List as the actual field type for the Bag,
you don’t need to specify a @hibernate.collection-index tag. Bags
have no index, so this column is unnecessary:

<class name="com.manning.hq.apdxA.Event" table="events">
 <bag name="bagOfSpeakers">
 <key column="event_id_bag"/>
 <one-to-many class="com.manning.hq.apdxA.Speaker" />
 </bag>
</class>

With the bag mapped, you can go ahead and add elements to it, like so:
Event event = new Event();
Speaker speaker1 = new Speaker();

Licensed to Tricia Fu <tricia.fu@gmail.com>

Subclasses 397
Speaker speaker2 = new Speaker();

event.getBagOfSpeakers().add(speaker1);
event.getBagOfSpeakers().add(speaker2);

Table schema

The table structure for Bags is just like a list, but without the order
column:

A.10.2 Other bags

The Bag mapping has quite a few variations, most of which are mapped
just like a Set. Here’s a list, but we don’t have enough space to describe
them in detail:

❂ Bag of entities, many-to-many (unidirectional or bidirectional)
❂ Bag of entities, one-to-many, bidirectional
❂ Bag of simple values
❂ Bag of components

Hibernate supports several major types of subclass type: table-per-class
(<subclass>), table-per-subclass (<joined-subclass>), and table-per-
concrete-class (both <any> and <union-subclass>). In Hibernate 3,
either <subclass> or <joined-subclass> can be used per hierarchy, but
you can’t mix in <union-subclass> too. So Event has two subclasses,
ConferenceEvent and NetworkingEvent, and use <subclass> and/or
<joined-subclass>. Figure A.11 shows a diagram of the class hierarchy
containing Event and its subclasses ConferenceEvent and NetworkEvent.

A.11 Subclasses

speakers

id event_id_bag

events

id
Licensed to Tricia Fu <tricia.fu@gmail.com>

398 APPENDIX The complete Hibernate mapping catalog
A.11.1 Table-per-class hierarchy strategy

To create a subclass (basic <subclass>), you need at least two classes: a
superclass and a subclass. You have to mark them with the correct
tags, and you need to specify a discriminator type so Hibernate knows
what class each row is. Here are the classes:

/**
 * @hibernate.class table="events" discriminator-value="Event"
 * @hibernate.discriminator column="class_name"
 */
public class Event implements Serializable {
 private Long id;
 /**
 * @hibernate.id generator-class="native" column="id"
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 }

/**
 * @hibernate.subclass discriminator-value="ConferenceEvent"
 */
public class ConferenceEvent extends Event{ }

/**
 * @hibernate.subclass discriminator-value="NetworkingEvent"
 */
public class NetworkingEvent extends Event{ }

Event

NetworkEventConferenceEvent

Figure A.11 Subclasses: Event with child ConferenceEvent and NetworkEvent
Licensed to Tricia Fu <tricia.fu@gmail.com>

Subclasses 399
The parent class, Event, defines the column that will hold the discrimi-
nator value. Each subclass (as well as Event) has a different value that
it will store in that column. When Hibernate loads a row, it looks at the
value of the column and knows whether to instantiate an Event or a
NetworkingEvent. Also, the id field demonstrates that the subclasses
don’t need to do anything other than extend Event. The superclass
Event holds all the details.

<class name="com.manning.hq.apdxA.Event" table="events">
 <id name="id" column="id" type="java.lang.Long">
 <generator class="native" />
 </id>
 <subclass name="com.manning.hq.apdxA.ConferenceEvent"
 discriminator-value=" ConferenceEvent " />
 <subclass name="com.manning.hq.apdxA.NetworkingEvent"
 discriminator-value="NetworkingEvent" />
</class>

As you can see, all the subclass mappings go into the Event.hbm.xml
file; no ConferenceEvent.hbm.xml will exist. Subclasses can have their
own properties, which will be defined inside the <subclass> element.

Table schema

One table holds all of the events, distinguished by the value in the
class_name column.

A.11.2 Table-per-subclass strategy

A joined subclass (<joined-subclass> element) works a bit differ-
ently from the <subclass> mapping. There will be a single top-level
table, which holds all of the ids, and a table for every subclass. Since
each subclass has its own table, Hibernate doesn’t need a discrimina-
tor column to determine the class type. Expanding our object model,

events

id class_name
Licensed to Tricia Fu <tricia.fu@gmail.com>

400 APPENDIX The complete Hibernate mapping catalog
assume that there are several types of Rooms, including a SuiteRoom
and a PenthouseRoom:

/**
 * @hibernate.class table="rooms"
 */
public class Room implements Serializable {
 private Long id;

 /**
 * @hibernate.id generator-class="native" column="id"
 * @return
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
}

/**
 *
 * @hibernate.joined-subclass table="suite_room"
 * @hibernate.joined-subclass-key column="room_id"
 */
public class SuiteRoom extends Room { }

/**
 *
 * @hibernate.joined-subclass table="penthouse_room"
 * @hibernate.joined-subclass-key column="room_id"
 */
public class PenthouseRoom extends Room { }

From the listing above, you can see that Room doesn’t need the discrimi-
nator value. Instead, each joined subclass has to specify a key column,
which joins back to the superclass table, in this case, room_id. And
while it’s currently not stated in the XDoclet documentation, a table
attribute is available that lets you specify which table the subclasses
map to.

<class name="com.manning.hq.apdxA.Room" table="rooms">

 <id name="id" column="id" type="java.lang.Long">

Licensed to Tricia Fu <tricia.fu@gmail.com>

Subclasses 401
 <generator class="native" />
 </id>
 <joined-subclass name="com.manning.hq.apdxA.SuiteRoom"
 table="suite_room">
 <key column="room_id" />
 </joined-subclass>
 <joined-subclass name="com.manning.hq.apdxA.PenthouseRoom"
 table="penthouse_room">
 <key column="room_id" />
 </joined-subclass>
</class>

If the subclasses had their own properties (which they likely would in a
real example), they’d be defined normally with <property> elements,
and they’d go right under the <key> element inside the subclass.

Table schema

For this relation three tables are needed: one for the parent, and one
for each of the two subclasses.

A.11.3 Table-per-concrete-class strategy: any

The next inheritance strategy is one that is not commonly used. The
table-per-concrete-class strategy makes use of the <any> mapping.
Each concrete class has its own table, but unlike the <joined-sub-
class> there’s no single table maintaining a common set of keys.

So if each table could theoretically have its own row “1,” how does
another table create a foreign key to it? Essentially, it needs what we
refer to as a compound foreign key, with one column to store the name
of table and one to store the foreign key. The fact that an object could
join to any row in any table means conventional joins don’t work.
Therefore, several selects are needed to do what normal joins can do in

rooms

id

suite_room

id room_id

penthouse_room

id room_id
one, so performance will be somewhat worse.

Licensed to Tricia Fu <tricia.fu@gmail.com>

402 APPENDIX The complete Hibernate mapping catalog
Although this mapping is a niche case, it has some neat uses, especially
for databases that need to add new tables dynamically at runtime (as a
content management system might do) or legacy databases.
Hibernate 3 has a new way to handle the table-per-concrete-class strat-
egy, <union-subclass>, but for 2.x, the <any> mapping is what’s avail-
able. So let’s explore what this looks like.

Our example for this section deals with event registration and pay-
ments. The Registration class will have any relationship to classes,
which implement a PaymentDetails interface. Since the Event is going
to be open, you need liberal payment options. So you’ll accept both
CreditCardPayments and BarterPayments. Both of these are structurally
different; each gets its own table. Here’s what the PaymentDetails
interface looks like:

public interface PaymentDetails { public Long getId(); }

The first subclass looks like this:

/**
 * @hibernate.class table="credit_card_payments"
 */
public class CreditCardPayment
 implements Serializable, PaymentDetails {
 private Long id;
 private BigDecimal amount;
 private String currencyCode;
 /**
 * @hibernate.id generator-class="native" column="id"
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 /**
 * @hibernate.property
 */
 public BigDecimal getAmount() { return amount; }
 public void setAmount(BigDecimal amount) {
 this.amount = amount;
 }

 /**

Licensed to Tricia Fu <tricia.fu@gmail.com>

Subclasses 403
 * @hibernate.property column="currency_code"
 */
 public String getCurrencyCode() { return currencyCode; }
 public void setCurrencyCode(String currencyCode) {
 this.currencyCode = currencyCode; }
}

And here’s the second subclass:

/**
 * @hibernate.class table="barter_payments"
 */
public class BarterPayment implements Serializable, PaymentDetails

{
 private Long id;
 private int numberOfCows;
 private int numberOfSheep;
 /**
 * @hibernate.id generator-class="native" column="id"
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 /**
 * @hibernate.property column="number_of_cows"
 */
 public int getNumberOfCows() { return numberOfCows; }
 public void setNumberOfCows(int numberOfCows) {
 this.numberOfCows = numberOfCows;
 }

 /**
 * @hibernate.property column="number_of_sheep"
 */
 public int getNumberOfSheep() { return numberOfSheep; }
 public void setNumberOfSheep(int numberOfSheep) {
 this.numberOfSheep = numberOfSheep;
 }
}

Licensed to Tricia Fu <tricia.fu@gmail.com>

404 APPENDIX The complete Hibernate mapping catalog
As you can see, both subclasses implement a very simple interface, Pay-
mentDetails, and each has its own id and table. Nothing in the tables
they use indicates they are subclasses. Next, let’s look at the Registra-
tion class, which actually has the <any> mapping:

/**
 * @hibernate.class table="registrations"
 */
public class Registration implements Serializable {
 private Long id;
 private PaymentDetails paymentDetails;
 /**
 * @hibernate.id generator-class="native" column="id"
 */
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 /**
 * @hibernate.any id-type="long" meta-type="java.lang.Class"
 * @hibernate.any-column name="table_name"
 * @hibernate.any-column name="payment_id"
 */
 public PaymentDetails getPaymentDetails() {
 return paymentDetails;
 }
 public void setPaymentDetails(PaymentDetails paymentDetails) {
 this.paymentDetails = paymentDetails;
 }
}

The @hibernate.any and @hibernate.any-column tags specify the col-
umn with the foreign key, and the column that holds the table name.
Here we use the fully qualified class name as the table name. The three
mapping files follow.

First, here’s Registration.hbm.xml:

<class name="com.manning.hq.apdxA.Registration"
 table="registrations">

 <id name="id" column="id" type="java.lang.Long">

Licensed to Tricia Fu <tricia.fu@gmail.com>

Subclasses 405
 <generator class="native"/>
 </id>
 <any name="paymentDetails" id-type="long"
 meta-type="java.lang.Class">
 <column name="payment_id" />
 <column name="table_name" />
 </any>
</class>

Next is CreditCardPayment.hbm.xml:

<class name="com.manning.hq.apdxA.CreditCardPayment"
 table="credit_card_payments">
 <id name="id" column="id" type="java.lang.Long" >
 <generator class="native" />
 </id>
 <property name="amount" type="java.math.BigDecimal"
 column="amount" />
 <property name="currencyCode" type="java.lang.String"
 column="currency_code" />
</class>

And finally, BarterPayment.hbm.xml:

<class name="com.manning.hq.apdxA.BarterPayment"
table="barter_payments">

 <id name="id" column="id" type="java.lang.Long" >
 <generator class="native" />
 </id>
 <property name="numberOfCows" type="int"
 column="number_of_cows" />
 <property name="numberOfSheep" type="int"

column="number_of_sheep" />
</class>

A Registration object can be assigned either a CreditCardPayment or a
BarterPayment, and each object is stored in its own table.
Licensed to Tricia Fu <tricia.fu@gmail.com>

406 APPENDIX The complete Hibernate mapping catalog
Table schema

Here’s what the table structures would look like:

To further highlight the data that is actually added to the database,
suppose you wrote the following code:

Registration r = new Registration();
CreditCardPayment cc = new CreditCardPayment();
r.setPaymentDetails(cc);
cc.setAmount(new BigDecimal(34.50));
cc.setCurrencyCode("US");
session.save(cc);
session.save(r);
session.flush();

You’d get something like the following rows in the database:

So you can see some sample data, as well as what the “compound for-

Registrations

id payment_id table_name

credit_card_payment

id amount currency_code

barter_payment

id number_of_cows number_of_sheep

Registrations

id payment_id table_name

100 102 com.manning.hq.apdxA.CreditCardPayment

credit_card_payment

id amount currency_code

102 34.50 US
eign key” looks like.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Subclasses 407
Non-class-based discriminators

Finally, you don’t have to use a fully-qualified class name for the table,
but since XDoclet 1.2.3 doesn’t have a tag for the <meta-value> ele-
ment, you’ll need to handwrite the mapping file. If you want to use
string keys, like “cc” or “bp” instead, here’s how the mapping file
would look:

<class name="com.manning.hq.apdxA.Registration"
 table="registrations">
 <id name="id" column="id" type="java.lang.Long">
 <generator class="native"/>
 </id>
 <any name="paymentDetails" id-type="long" meta-type="string">
 <meta-value value="cc"
 class="com.manning.hq.apdxA.CreditCardPayment"/>
 <meta-value value="bp"
 class="com.manning.hq.apdxA.BarterPayment"/>
 <column name="table_name"/>
 <column name="payment_id"/>
 </any>
</class>

As you can see, <meta-value> allows non-class values to be used as the
discriminators. In addition, you must change the meta-type attribute
back to string rather than java.lang.Class.

Other possible relationships

In addition to the <any> relationship are several other variations of the
table-per-concrete-class strategy, including

❂ <many-to-any>, which is supported by the @hibernate.many-to-any
and @hibernate-many-to-any-column tags

❂ <index-many-to-any>, for which no tag is available as of XDoclet
1.2.3, so a merge point will be necessary

Both of these variations allow for very loose relationships between
tables. You will probably need them even more rarely than <any>
because they are very complex and uncommon cases, but handy when

you need them.

Licensed to Tricia Fu <tricia.fu@gmail.com>

408 APPENDIX The complete Hibernate mapping catalog
A.11.4 Table-per-concrete-class strategy: union

A new relationship added in Hibernate 3 is the <union-subclass> rela-
tionship. Like the <any> relationship, it uses a single table for each con-
crete class, but doesn’t use a compound foreign key. Since the primary
key has to be shared across all the tables, you can’t use the identity key
generation scheme. Also, because it’s a new relationship, XDoclet
doesn’t yet support it, so handwriting the mapping file will be neces-
sary. We’ll use the same classes as the <any> mapping and the interface
PaymentDetails, with subclasses UnionCreditCardPayment and Union-
BarterPayment. Here’s what UnionBarterPayment looks like:

public class UnionBarterPayment implements PaymentDetails {
 private Long id;
 private int numberOfCows;

 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 public int getNumberOfCows() { return numberOfCows; }
 public void setNumberOfCows(int numberOfCows) {
 this.numberOfCows = numberOfCows;
 }
}

And UnionCreditCardPayment is next:

public class UnionCreditCardPayment implements PaymentDetails {
 private Long id;
 private BigDecimal amount;

 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 public BigDecimal getAmount() { return amount; }
 public void setAmount(BigDecimal amount) {
 this.amount = amount;
 }
}

Licensed to Tricia Fu <tricia.fu@gmail.com>

Subclasses 409
Finally, a single mapping file is used, called PaymentDetails.hbm.xml,
that has mappings for both classes. Here’s what it looks like:

<hibernate-mapping>
 <class name="com.manning.hq.apdxA.PaymentDetails"
 table="payment_details">
 <id name="id" column="id" type="java.lang.Long">
 <generator class="increment"/>
 </id>
 <union-subclass
 name="com.manning.hq.apdxA.UnionBarterPayment"
 table="union_barter_payments">
 <property name="numberOfCows"
 column="number_of_cows"/>
 </union-subclass>
 <union-subclass
 name="com.manning.hq.apdxA.UnionCreditCardPayment"
 table="union_cc_payments">
 <property name="amount" column="amount"/>
 </union-subclass>
 </class>
</hibernate-mapping>

Note that we used the increment key generation strategy, but anything
besides identity should work.

Table schema

Here’s what the table structures would look like:

Union subclasses allow the table-per-concrete strategy without having
to be used as a relationship, like the <any> mapping.

payment_details

id

union_cc_payments

id amount

union_barter_payments

id number_of_cows
Licensed to Tricia Fu <tricia.fu@gmail.com>

410 APPENDIX The complete Hibernate mapping catalog
The appendix has summarized and detailed most of the common asso-
ciations that Hibernate permits. We’ve given examples of the mapping
elements and how you can use XDoclet tags to generate them. This
appendix is not meant as a replacement for the Hibernate manual, but
as a supplemental catalog. You should be able to look up the associa-
tion you want, find the mapping details, and then turn to the Hibernate
manual or XDoclet to fill in the details.

A.12 Summary
Licensed to Tricia Fu <tricia.fu@gmail.com>

Index
Symbols
< 182
<= 182
<> 182
= 182
> 182
>= 182

A
Active code generation 307
agile methodology 324
all-delete-orphan 147
and 182
AnnotationConfiguration 357
annotations 354

and XDoclet 357
anonymous inner class

using for callbacks 207
Ant 2, 26, 186

build file 36
configuring for XDoclet 280
debugging output 41
extracting 30
inserting into XDoclet tags 309
installing 30– 31
obtaining 30

ANT_HOME environment variable 31
<antcall> element 309
any 182
<any> mapping 401
Apache commons connection pool 210
Apache Software Foundation 30
appenders for log4j 104
ApplicationContext 210, 216

applicationContext.xml 208, 210
array 132

entity 392
of primitive values 394
other possible types 395
persistent. See collections
relationships 392

Aspect Oriented Programming 203, 215
assertFalse 317
AssertionFailedError 317
assertions 316
assertTrue 317
association

outer-join property 24
relational vs. object 5
table 378
unidirectional 60

attributes
used by XDoclet tags 278
411

running from command line 39– 41
setting up 27

@author tag 277
auto_increment fields 107

Licensed to Tricia Fu <tricia.fu@gmail.com>

412 INDEX
AutoFlushEvent 360
automated unit tests 313

benifit of 345
automatic dirty object checking 197

B
Bag

one to many, entity, unidirectional 396
other possible types 397
relationships 395
See also collections, Bag

<bag> element 395
@Basic 355
BasicDataSource

apache commons 208
<batchtest> element 320
<bean> element 211
best practices, organizing your projects

with 189
between 182
bidirectional associations 142

inverse end 143
many-to-many 143

inverse 145
boilerplate code problem 196, 201
brittle tests, avoiding 333, 345
build file 31

default name for 40
reusing 42, 46– 48
specifying name of 42

build process 30
build.xml. See Ant, build file
business logic 198
buzzword compliance 203

C
C3P0 74
cache 24, 79

query results 24
second-level and HQL 164
second-level caches. See second-level

cache

transactional 81
usage attribute 80

cache provider 79– 82
cache.provider_class 79
collections and classes 80

callbacks 206– 207
Cartesian product 14, 172
cascade 64– 66

attribute for hibernate.many-to-one tag
293

attribute for hibernate.set tag 303
avoid need to manually save objects 116
configuring 65
executed 65
for many-to-one relationships 115
save 17
types 65

CASE 349
casting, performed by DAOs 201
CDATA 167
CGLIB 62
checked exceptions, converting to

unchecked 108, 192, 205
class attribute

for hibernate.component tag 295
for hibernate.many-to-one tag 293
for mapping files 94

class element 57
class files, output location 41
class level comments, as valid location for

XDoclet tags 283
class tag. See hibernate.class tag
class type 349
classes, running in Ant 44
ClassNotFoundException

thrown on misnamed class 305
classpath

configuring to include XDoclet 281
defining in build file 42

ClasspathXmlApplicationContext 211
clean target 45
CLEAN_INSERT operation 338
session based 328
Session vs. second-level 79

closing sessions
with a helper class 111

Licensed to Tricia Fu <tricia.fu@gmail.com>

INDEX 413
code duplication, avoiding 215
code generate, hbm files 274
code generation tool

Xdoclet as a 312
code samples for XDoclet 280
collections 63– 64

accessing by index 180
Bag 125, 136

as List 136
cascades 145
Collections semantics 125
element 131
elements of 177
filters 141
generating with xdoclte 300
Hibernate implementation of 126
Hibernate support for 123
idbag 137
index 125

map 133
index-many-to-many 134
interface 127
key 129
key element 64
lazy 23, 138

populating 138
populating in web tier 139
retrieving 173

list 132
many-to-many 130

column attribute 130
map 133
of value types 131
one-to-many 128
persistent behavior 125
persistent types 64
set 127, 131
sorting 139
table attribute 130

@Column 355
column attribute

for hibernate.many-to-one tag 293
for hibernate.property tag 287

<column> element 290, 292
column tag 282
comments, value of XDoclet tags 275
Commons Logging 102

homepage for 104
Comparable 140

vs. Comparator 141
Comparator 140– 141
compareTo(Object) 140
component 89, 116, 124

bidirectional 374
generating multiple with XDoclet 298
having no identity 117
mapping catalog for 373
mapping in .hbm.xml file 119
multiple identitical 300
reasons to use one 121
unidirectional 373
using multiple 121

<component> element 119, 297, 299
component tag

similiarity to many-to-one relationship
297

CompositeUserTypes 147, 154
assemble(...) and disassemble(...) 157
second-level cache 158
Serializable 154
vs. components 158
vs. UserType 154

Configuration
addJar(...) 67

configuration
application server 55
basic 53– 56
cache element 80
cache providers 79– 82
central file 208
connection pools 74– 76

configuring specific 75
connection properties 54
for hibernate.collection-key 305
for hibernate.id tag 284

connection.datasource 55
database connections 53

Licensed to Tricia Fu <tricia.fu@gmail.com>

414 INDEX
configuration (continued)
dialect 54
dialect property 54, 56
Hibernate 45
JDBC connections 53
JNDI DataSource 55
mapping 55
mapping element 55
transactions 76– 78

Configuration class 52
addClass(...) 67
addFile(...) 67
adding classes dynamically 68
configure() 67

connection
closing manually 108
configuring for database 95
properties 54

connection pool 54, 74– 76
adding new 75
default 75

connection.datasource property 55
Connector/J 34
consistent state 336
convenience methods 206
CONVERT 170
cooperating tags 301
copy and paste reuse 196
CopyEvent 360
core patterns, as defined by Sun 190
create, read, update and delete. See CRUD
Criteria 183

alternative to HQL 183
limitations 184

CRUD 192, 201
CURRENT_TIMESTAMP 176
custom types 147

purpose 147
UserType 148

D
Data Access Object pattern (DAO) 190

database
changing structure 336
configuring connection 95
portability of 291
setting up 31– 34
sharing between tests 335
testing 324

DatabaseConnection 342
DatabaseTestCase 339– 340
<dataset> element, for DBUnit 337
DataSource 74
dates

querying based on 329
working around JDK API 99

DBCP 74
DBUnit 336, 345

creating test data 337
disadvantages of SQL scripts 336
generating DTD 336
importing test data 337
loading test data 336
operations 338
verifying state of the database 345

<dbunit> task 336
debugging, for Ant property substitution

310
default attribute in Ant 37
DELETE operation 338
DELETE_ALL operation 338
DeleteEvent 360
depends attribute 38
deploying applications

against multiple databases 331
description message

of asserts 318
destdir attribute 41
detached objects

problem of 197, 202
updating 206

dialect
attribute for 311
per class as a style of DAO 192
simple implementation of 193

property for 54, 56
specifying in config file 96

Licensed to Tricia Fu <tricia.fu@gmail.com>

INDEX 415
directory, for projects 35
DirtyCheckEvent 360
discriminator 350

column 398
derived 350
formulas 349
non-class based 407
See also inheritance

distinct 177
documentation, via XDoclet tags 275
domain layer 198
domain logic

testing 345
using a component to encapsulate 121

domain model 10, 20
using Hibernate for 35

domain objects
testing of 315

drivers. See JDBC, drivers
drop tables, using SchemaExport task

100
dtd

for .hbm.xml files 93
for hibernate.cfg.xml 95

duplication
avoiding in build files 42

duplication problem
potential for with simple DAOs 196
potential of 201

dynamic classes 352
dynamic domain model 352

advantage 353
disadvantage 353
retrieving 354

E
echo task 39
EHCache 79

configuring 81
ehcache.xml 81
EJB3 355

entities, verify they persist 325
@Entity 355

entity object vs. persistent object 134
entity objects 89
entity-name 353
environment

managed 52
nonmanaged 52

equality
strategy based on identity 389

equals() method 389
EventLister 360
EventObject 360
events 359
EvictEvent 360
evils of duplication, avoiding 312
exception handling, managing

with DAOs 191
exceptions, thrown from failed

assertions 316
excess objects, in the database during

testing 330
excise 204
exists 182
explicitness 195, 213
expressions. See HQL, expressions
extension points

for XDoclet 312
extract Hibernate utility class,

refactoring of 108
Extract SchemaExport task

refactoring of 111
Extreme Programming 324

F
failure messages 317
false negatives 330
false positives

avoiding 329
fileset element 46
Enterprise JavaBeans (EJB) 20
XDoclet tags for 277

filter-def 347
filtering, with ant 332

Licensed to Tricia Fu <tricia.fu@gmail.com>

416 INDEX
filters 347
applying 347
See also collections, filters

finally block
using to delete objects during tests 335

finely grained objects 121
FlatXmlDataSet 340
flush, session state to the database 99
FlushEvent 360
foreign key 3

automatically mangaged by hibernate
122

compound 401, 406
generation algorithm 368
unsupported by all MySQL versions

106
using to specify relationships 94

formatters 319
FROM 171
functions. See HQL, functions

G
generator 58– 59

assigned 58
native 59

generator-class attribute 284
getSetUpOperation() method 342
getTearDownOperation() method. 342
getter/setter 92
GROUP BY. See HQL, GROUP BY

H
handwritten, avoiding need for 312
hashCode() method 389
HAVING 182
HBM files. See mapping definition
hbm.xml

necessary evil of 274
specifying location for 93
See also mapping definition

helper class, creating one for
hibernate 108

Hibernate
completeness 22
connecting 42
documentation 364
flexibility 20
home page 28
instead of JDBC 7
mapping document 21
obtaining 28
performance 23
persistence with 20– 24
primary classes 52
runtime configuration file 21
simplicity 20

Hibernate in Action 1
Hibernate manual

not a replacement for 410
Hibernate Query Language. See HQL
Hibernate Reference documentation 311
hibernate.any-column tag 404
hibernate.array tag 304
hibernate.bag tag 304
hibernate.cfg.xml 53– 56, 95

alternative to 208
and hibernate.properties 53
generating 310

hibernate.class tag 278, 283
using to generate hibernate.cfg.xml 310

hibernate.collection-composite-element
tag 388

hibernate.collection-element tag 383
hibernate.collection-index tag 382
hibernate.collection-key tag 301, 304
hibernate.collection-many-to-many

tag 303
hibernate.collection-one-to-many

tag 301, 305
hibernate.column tag 289, 301

needing in conjuction with hiber-
nate.component tags 300

reasons to use 290

hibernate.many-to-any tag 407
Hibern8IDE 186

hibernate.component tag 295
hibernate.id tag 284, 301

Licensed to Tricia Fu <tricia.fu@gmail.com>

INDEX 417
hibernate.index-many-to-many tag 390
hibernate.list tag 304
hibernate.many-to-one tag 292, 301
hibernate.map tag 304
hibernate.parent tag 375
hibernate.primitive-array tag 304, 394
hibernate.properties 53
hibernate.property tag 287, 301

used by hibernate.componet tag 295
hibernate.set tag 301, 303
Hibernate.STRING 152
hibernate23.jar

adding to classpath 44
HibernateCallback 207
<hibernatecfg> subtask 311
HibernateDaoSupport 211, 213
hibernatedoclet task 281, 308, 310
hibernate-many-to-any-column tag 407
hibernate-mapping

package 57
hibernate-mapping element 57
hibernate-mapping-2.0.dtd 278
HibernateTemplate 205, 211, 216
hilo key generation 309
HQL 23, 54, 70

alias 171
naming convention 172

alternatives to 183
avg 176
consolditing in one place 191
debugging 169
displaying generated SQL. See show_sql
executing 163, 168
expressions 179

maxElement(...) 180
maxIndex(...) 180
minElement(...) 180
size(...) 179

for efficient retrieval 364
functions 176

aggregate 176
elements(...) 177

GROUP BY 182
join 172

alias for 177
types of 172

joined objects 174
limiting results. See Query, maxResults
max 176
min 176
named queries 167

advantage of 167
new. See HQL, returning new objects
ORDER BY 182– 183
outer-joins 168
paramaters, positional 165
parameters, named 166
properties 178

class 178
class, return type 179
id 178
size 179

query parameters 23
query substitutions 169
querying objects 171
querying on object properties 71
returning new objects 175
returning specific fields. See HQL,

SELECT projection
SELECT 174

projection 174
returned values from 174

similar to SQL 162
similiar to SQL 22
sum 176
WHERE 179
why needed 161

HQL queries, verify they work 325
HTML

converting test results to 321
generated by Javadoc 276

I

for indexed collections 180
scalar 176

iBATIS 8
@Id 355

Licensed to Tricia Fu <tricia.fu@gmail.com>

418 INDEX
id
column attribute 58
element for 58
mapped attribute and property type 59
tag for 282
unsaved-value attribute 58– 59

IDatabaseConnection 342
idbag 125

performance 138
IDE. See Integrated Development Envi-

ronment (IDE)
identical primary keys, one-to-one 368
identity

as defining charactership of entities 90
key generation for 309
relational vs. object 4

impedance mismatch. See object/relational
impedance mismatch

import task 42, 47
in 182
increment key generation 409
index attribute

for hibernate.column tag 290
indexes 132

automatically generated by
schemaexport 105

for lists and arrays 132
for maps 133
storing in database column 381

<index-many-to-any> element 407
inheritance 83– 86, 351

discriminator element 84
relational vs. object 5
table per class 83– 85
table per concrete class 83
table per subclass 83, 85– 86

InitializeCollectionEvent 360
InitializeCollectionEventListener 361
inner join fetch 173
INSERT operation 338
instrumentation 362

Interceptor 359
inverse 142, 380
inverse attribute for hibernate.set tag 304
isolation

making sure code works in 313
providing with multiple databases 331
testing in 324

ITable 344
iterative development

using XDoclet 289

J
JAR files

adding to classpath 42
organizing for resuse 43

Java 1.4, lacking metadata capability 274
Java 5 354
Java Beans 208, 211
Java Blueprints 190
java source, parsing 276
java task 39, 48
Java Transaction API. See JTA
JAVA_HOME 27
JavaBean, specifications for 92
javac task 39, 48
JavaDoc 275

basics of 276
javadoc comments 276– 277
JBDC, transactions 77
JBoss 52
JDBC

avoiding the need for 31
connection 342
database connections 53
drivers 34
persistence with 9– 20

JDBC Datasources 202
JDK 27
JDO

changing ORM implementations to 191
XDoclet tags for 277
Integrated Development Environment
(IDE) 35

join 113, 168, 348
See also HQL, join

Licensed to Tricia Fu <tricia.fu@gmail.com>

INDEX 419
join table 6
<joined-subclass> element 399
JSR-175 354
JTA 76

transactions 77– 78
<junit> task 319
JUnit 2

as the defacto standard for testing 314
homepage of 318
installing 318
providing support structure to run tests

315
junit.jar 318

bundled with Ant 321
<junitreport> task 319– 320

K
karma, generated by testing 319
key 349
key column

naming for correct object 305
<key> element 302
key generation

configuring with Ant 309
known state, reseting database to 335,

345

L
labor intensive style of manual testing 314
Layer Supertype pattern 190, 197– 198,

212
layering your application 198
lazy 362
lazy attribute for hibernate.set tag 304
lazy collections in a web application 139
LazyInitializationException 139
legacy database. See object/relational map-

ping (ORM), when to use
length

for hibernate.column tag 290
for hibernate.id tag 284
for hibernate.property tag 287

like 182
LinkedHashMap 140
LinkedHashSet 140
LinkedList 126
Linux

getting Hibernate for 28
installing Hibernate for 29

list 381
one-to-many, unidirectional 381
simple values 382

listener 361
load method 114
loader 359
LoadEvent 360
LoadEventListener 360
local database, for developer testing 331
LocalSessionFactoryBean 210

Spring 209
LockEvent 360
log4j 44, 102

configuring 45
homepage for 104
properties file 102

log4j.properties
configuring 103

logging JDK 1.4 102
logging, with Log4j 45

M
managed environment 52
manual testing 313
Manuel Laflamme 336
<many-to-any> element 407
many-to-many 5
<many-to-many> element 303
many-to-many list 300
many-to-one association, lazy 61
<many-to-one> element 294
many-to-one element 60– 61

column attribute 61
example 61
levels, for logging 103
light weight container 202, 208, 215

object references between persistent
objects 61

Licensed to Tricia Fu <tricia.fu@gmail.com>

420 INDEX
many-to-one relationship 89, 122, 366
bidirectional 367
unidirectional 367

Map 133
map 384

entity keys 389
many-to-many, entity 386
of components 387
of possible types 392
one-to-many, entity 384
See also collections, map

mapping definition 56– 66
multiple files 56
naming convention 56

mapping element 55
mapping file 31, 55

generating with XDoclet 282
location 64

MappingException 57
max_fetch_depth 168
memory management 204
merge directory 307
merge points 306
metadata 354
<meta-value> element 407
mkdir task 39
Mock objects 324
modular build files 49
MS SQL Server 31
MSSQL_ INSERT operation 338
MSSQL_CLEAN_INSERT

operation 338
MSSQL_REFRESH operation 338
multiple databases 345

using for testing 331
multiple objects, for a single table 122
multiple tables

mapping objects to 348
spanning with associations 122

MVC web framework, Spring 203
MySQL 26– 27, 31, 170

drivers 34
obtaining 32
show databases 33
starting from command line 33
supporting of subselects 32
testing 32
website 34

mysql console, showing table data
from 107

N
name attribute

for hibernate.column tag 290
in Ant 37

named parameters 358
naming convention

for association tables 379
for test methods 317
for tests 316

native key generation
problems with one-to-one 370

network latency 331
nonmanaged environment 52
nonstrict-read-write cache, usage 81
NonUniqueObjectException 73
not 182
not null

for hibernate.column tag 290
for hibernate.many-to-one tag 293

now() 176

O
object

persisting 68– 70
retrieving 70– 72

object graph 9
deleting 18
obtaining 88
persisting to relational model 15
querying 19
retrieving using JDBC 11

object model, building and mapping with

adding to Windows path 33
bin directory 32

Hibernate 364
object/relational impedance mismatch 4

Licensed to Tricia Fu <tricia.fu@gmail.com>

INDEX 421
object/relational mapping (ORM) 7
when to use 8

one-to-many 5
<one-to-many> element 302
one-to-many set 300
one-to-one 5
one-to-one relationship 368

bidirectional 372
foreign key 370
unidirectional 370

Open Closed Principle 192
<operation> element, for DBUnit 338
or 182
Oracle 31, 170
ORDER BY. See HQL, ORDER BY
order-by 140
order-by attribute, for hibernate.set

tag 304
outer-join property 24
overriding targets when importing build

files 113

P
package

scoped methods for testing 326
structure matching merge directory

to 307
to locate tests in 326

paged results. See ScrollableResults
@param tag 277
parameters, using in Ant 43
<parent> element 375
passive code generation 307
path element 36, 38, 46
patterns

catalog of 364
for logging 104
organizing your projects with 189

Patterns of Enterprise Application
Architecture 198

persistence 9, 17– 19, 22
definition 3

make objects persistent 68– 70
object

update(...) 69
object vs. entity 134
testing of persistent objects 327
with Hibernate 20– 24
with JDBC 9

plain old Java object (POJO) 19
polymorphic association 86
polymorphism

XDoclet tags for handling 283
prefix attribute for hibernate.component

tag 295, 298
PreparedStatement 165, 168

class 19
interface 71

presentation layer 198
primary key 3

assigned by Hibernate 328
associations 352
automatic setting of 114
loading objects by 113

primitive types vs. object types 69
<primitive-array> element 392
programmatic configuration,

avoiding 208
project element 37
project, setting up 34– 41
projection 174
properties 59– 60

available data types 60
lazy 361
name attribute 59
querying specific 171
references 352
resolving 41
substitution using Ant/XDoclet 306,

308, 312
type attribute, determined at

runtime 60
property element

generated by XDoclet 289

events 359
layer for 198

in Ant 36– 37
property level tag for XDoclet 282, 285

Licensed to Tricia Fu <tricia.fu@gmail.com>

422 INDEX
PropertyAccessException 69
protected methods

as used in supertypes 198
Proxool 74
proxy 24, 62– 63

defining 62
populated by ID 63

Q
Quality Assurance 313
queries testing 329
query 164

building inside callback 207
features 164
iterate(...) 164
maxResults 164
query.substitutions property 169
setEntity(...) 181
substitutions property. See HQL, query

substitutions
QueryException 171, 179

R
read-only cache, usage 81
read-write cache, usage 81
refactoring

extract component 117
extracting common resource handling

code 196
for simplifying resource code 108

references, debugging 48
REFRESH operation 338
RefreshEvent 360
Registry pattern 213
relational database 3
relational identifier 4
relational model 3
ReplicateEvent 360
<report> element 321
reports directory 322
reset the database 328
resource clean up, managed by DAOs

retrieving objects 70– 72
return 359
@return tag 277
reusing build files 42, 46– 48
reverse engineer, XDoclet tags from

Hibernate elements 311
robust tests 334
ROI 298
rollback

transaction with a helper class 111
rollbacks

handling 99
root element 37
root logger 104
rule of XDoclet Collections 302
RuntimeException, automatic converting

to 215

S
sample data, loading using Hibernate 96
SaveEvent 360
save-update 146

cascading 116
scalar values. See HQL SELECT, projec-

tion
SchemaExport 292

importing in ant 112
specifying needed resources 101
task 89, 99, 289
tool 122

SchemaUpdate task 106, 289
ScrollableResults 165
second-level cache 79
SELECT

optional in HQL 162
See also HQL, SELECT

servers, deploying for multiple 332
Session

cache 72– 74
cache, adding objects to 73
clear() 74
191
ResultSet 19, 168

closing by HibernateTemplate 205
contains() 73

Licensed to Tricia Fu <tricia.fu@gmail.com>

INDEX 423
Session (continued)
createCriteria(...) 184
creating multiple for testing 328
evict(...) 73
find(...) 71, 163
find(...) vs. iterate(...) 163
flush() 69
instance of 52
iterate(...) 163
iterate(...) efficiency 163
load(...) 70
passing around 197
per operation, as a responsibilty of

DAOs 192
save(...) 68
saveOrUpdate(...) 69
thread safety 66
update() 69

session level object cache 197
SessionFactory 52

building using hibernate.cfg.xml 99
configuring 66– 68

using hibernate.cfg.xml 95
why to avoid frequent creation of 107

set
many-to-many 378
many-to-many, bidirectional 379
many-to-many, unidirectional 378
one-to-many 375
one-to-many bidirectional 377
one-to-many, unidirectional 376
See also collections, set

<set> element 302
setting up projects 34– 41
setUp() method 328

using to clean out database 335
show_sql 169
single transaction per operation as a

responsiblity of DAOs 192
Singleton pattern 215– 216
size, declaring for columns 291

sorting
sets at query time 376
sets in memory 376

sourceforge.net, hosting XDoclet 276
Spring 2, 190
Spring framework 202
SQL 3

create database 33
create table 99
custom 357
dialects 55
generated by Hibernate. See show_sql
generating tables 274
Hibernate abstraction 22
using DAO pattern for 191

SQL scripts, using to load data 336
sql-delete 358
SQLException

parsing output from 215
sql-insert 358
sql-type attribute

for hibernate.column tag 290
sql-update 358
stack trace, denoting assertion failure 318
Statement class 19
static domain model 352
static field, storing SessionFactory in 111
stored procedures 357
strong typing 353
strongly typed 213

DAOs 193
Struts 2

XDoclet tags for 277
stubbing out components 324
stylesheet, XSLT 320
<subclass> element 398
subclasses

catalog of 397
subselects 162

See also MySQL, supporting of subse-
lects
some 182
sort attribute for hibernate.set tag 304

suite, as collection of tests 317
Sun 27

Licensed to Tricia Fu <tricia.fu@gmail.com>

424 INDEX
surrogate key 8
Swing 52
SWT 52
syntax check, HQL 325
System.out.println, testing with 313

T
@Table 355
table attribute 278

for hibernate.set tag 303
table per class hierarchy

subclass mapping 398
tables

creating with SchemaExport 99
per concrete class 351, 401
per subclass 399
schemas 366

Tapestry 2
target element 36, 38
task element 36, 39
taskdef task 102
tearDown() method 328
templates 203– 204
test data, loading 336
test everything that could possibly

break 314
test infecting 318
test properties files 332
test results

as xml file 320
shouldn't affect other tests 335

TestCase class 316
testing directory 326
testing persistence layer, how to do it 324
testing task, adding to build file 323
tests, organizing 326
TEXT column type 291
Thread Local Session pattern 197
threading 78
@throws tag 277
tips for testing databases 331
transaction 76– 78

commiting by HibernateTemplate 205
configuring for JTA 77
handled by HibernateTemplate 205
JDBC 77
jta.UserTransaction 77
managing with DAOs 191
transaction.factory_class 77
transaction.manager_lookup_class 77

Transaction API 215
transactional cache usage 81
@Transient 356
transient 146
TransientObjectException

thrown when cascades aren't specfied
115

TreeCache 81
truncate data 291
type 354

for hibernate.property tag 287
type attribute for hibernate.id tag 284

U
UML diagrams 365
union subclass 351, 402, 408

differences 351
unique 352

for hibernate.column tag 290
for hibernate.many-to-one tag 293
for hibernate.property tag 287

unique-key attribute
for hibernate.column tag 290

Unix
getting Hibernate for 28
installing Hibernate for 29

unsaved-value 284, 286
impacting save or update 69

UPDATE operation 338
UpdateEvent 360
updating database schema 120
UserType 147, 153

bridges persistence 151

automatically flushing Session 77
benefits of JTA 78

multiple columns 154
nullSafeGetSet(...) 151

Licensed to Tricia Fu <tricia.fu@gmail.com>

INDEX 425
UserType (continued)
Serializable 151
sqlTypes() 151

V
validating DTD for database 336
VARCHAR, converts to Strings 105
verifying

classes persist 324, 345
entities cascade 325
fields map correctly 325

version control, not checking derived files
into 322

version, changing in build file 43
virtualization. See filters

W
WebSphere 52
Webwork 2

XDoclet tags for 277
WHERE. See HQL, WHERE

whitespace condensing 366
Wiki 28
Windows

getting Hibernate for 28
installing Hibernate for 28

wiring objects 208
workarounds for XDoclet 306

X
Xalan 320
XDoclet 2, 354

documentation 364
homepage of 279
using to generate .hbm.xml files 275
working at build time 280

XDoclet Hibernate Tag Reference 311
xdoclet.version path 280
XML file, splitting up into multiple data

files 340
XML formats for DBUnit 337
XSLT 320
Licensed to Tricia Fu <tricia.fu@gmail.com>

	Hibernate Quickly
	Contents
	Roadmap
	Who should read this book?
	Code
	Author Online
	About the authors

	Why Hibernate?
	Understanding object persistence
	1.1.1 Identity
	1.1.2 Inheritance
	1.1.3 Associations
	1.1.4 Object/relational mapping
	When to use ORM

	Using direct JDBC
	1.2.1 Example application
	1.2.2 Retrieving object graphs using JDBC
	1.2.3 Persisting object graphs to a relational model
	1.2.4 Deleting object graphs
	1.2.5 Querying object graphs

	Persistence with Hibernate
	1.3.1 Simplicity and flexibility
	1.3.2 Completeness
	1.3.3 Performance

	Summary

	Installing and building projects with Ant
	Getting a Hibernate distribution
	Installing Ant
	2.2.1 Getting Ant
	2.2.2 Extracting and installing Ant

	Setting up a database
	2.3.1 Getting MySQL
	2.3.2 Testing MySQL
	2.3.3 MySQL drivers

	Setting up a project
	2.4.1 Defining directories
	2.4.2 Ant 101
	Projects
	Properties
	Paths
	Targets
	Tasks

	2.4.3 Running Ant

	Habits of highly effective build files
	2.5.1 Connecting Hibernate
	Updating the build file
	A sample class with Log4j

	2.5.2 Reusable build files
	2.5.3 Expanding your horizons

	Summary

	Hibernate basics
	Chapter goals
	Assumptions
	Configuring Hibernate
	3.1.1 Basic configuration
	Using Hibernate-managed JDBC connections
	Using a JNDI DataSource

	Creating mapping definitions
	3.2.1 IDs and generators
	3.2.2 Properties
	3.2.3 Many-to-one element
	3.2.4 Proxies
	3.2.5 Collections
	3.2.6 Cascades
	3.2.7 Fetching associated objects

	Building the SessionFactory
	3.3.1 Configuring the SessionFactory

	Persisting objects
	Retrieving objects
	The Session cache
	Advanced configuration
	3.7.1 Connection pools
	3.7.2 Transactions
	3.7.3 Cache providers
	Configuring EHCache

	Inheritance
	3.8.1 Table per class hierarchy
	3.8.2 Table per subclass

	Summary

	Associations and components
	Associations
	4.1.1 Many-to-one relationships, in depth
	Defining the Event and Location classes
	Mapping the database

	4.1.2 The central configuration file
	4.1.3 Defining sample data

	Building tables with Ant and SchemaExport
	4.2.1 Logging with log4j and Commons Logging
	4.2.2 Running SchemaExport
	4.2.3 Loading the Events
	4.2.4 Refactoring
	Refactoring: Extract HibernateFactory utility class
	Refactoring: Extract the SchemaExport task

	4.2.5 Finding Events
	4.2.6 Cascades
	Saving the object graph
	Location cascading

	Components
	4.3.1 What’s in a component?
	4.3.2 Mapping a component
	4.3.3 Why use a component?
	Multiple addresses
	Grouping domain logic

	Summary

	Collections and custom types
	Persisting collections and arrays
	5.1.1 Using interfaces
	5.1.2 Mapping persistent collections
	One-to-many associations
	Many-to-many associations
	Persisting collections of values

	5.1.3 Collection types
	Sets
	Lists and Arrays
	Maps
	Bags
	idbags

	5.1.4 Lazy collections
	5.1.5 Sorted collections
	5.1.6 Bidirectional associations
	Many-to-many bidirectional associations

	5.1.7 Cascading collections

	Implementing custom types
	5.2.1 UserTypes
	Using UserTypes

	5.2.2 Implementing CompositeUserTypes

	Summary

	Querying persistent objects
	Using HQL
	6.1.1 session.find(…)
	6.1.2 The Query interface
	Positional parameters
	Named parameters
	Named queries

	6.1.3 Outer joins and HQL
	6.1.4 Show SQL
	6.1.5 Query substitutions
	6.1.6 Query parser

	Querying objects with HQL
	6.2.1 The FROM clause
	6.2.2 Joins
	Types of joins

	6.2.3 Selects
	Projection
	Returning new objects

	6.2.4 Using functions
	6.2.5 HQL properties
	6.2.6 Using expressions
	Grouping and ordering

	Criteria queries
	Stored procedures
	Hibern8IDE
	Summary

	Organizing with Spring and data access objects
	The ubiquitous DAO pattern
	7.1.1 Keeping the HQL together
	DAOs have style too
	A simple DAO

	Analyzing the DAO
	7.2.1 Boilerplate code
	7.2.2 Potential duplication
	7.2.3 Detached objects only

	The Layer Supertype pattern
	7.3.1 Creating an AbstractDao

	The Spring Framework
	7.4.1 What’s in a template?
	Convenience methods
	Callbacks

	7.4.2 Beans and their factories
	A central configuration file
	Building the ApplicationContext
	Creating a registry
	More Spring tools

	Summary

	Web frameworks: WebWork, Struts, and Tapestry
	Defining the application
	A quick overview of MVC
	8.2.1 Service Layer pattern

	Decoupling Hibernate from the web layer
	8.3.1 Working with detached objects
	8.3.2 Session scope
	8.3.3 Accessing the Session from the Controller
	Servlet filters

	8.3.4 Accessing the Session from the Service layer

	WebWork
	8.4.1 WebWork fundamentals
	8.4.2 Creating controllers
	Data access object
	Calendar models
	Builds the navigation
	Builds the Calendar table
	Displays the day
	Applies some style
	IoC components

	Struts
	8.5.1 Struts fundamentals
	8.5.2 Building Struts Actions
	Struts calendar model
	Viewing events

	Tapestry
	8.6.1 Getting started
	8.6.2 Tapestry fundamentals
	8.6.3 HTML views
	8.6.4 Page controller
	8.6.5 Page specification
	8.6.6 web.xml

	Hibernate in the view layer
	Summary

	Hibernating with XDoclet
	Hibernating with XDoclet
	Essential XDoclet
	9.1.1 JavaDoc basics
	9.1.2 XDoclet: Building your own tags
	9.1.3 Installing XDoclet
	9.1.4 Configuring Ant

	Making single objects persistent
	9.2.1 The @hibernate.class tag
	9.2.2 The @hibernate.id tag
	unsaved-value

	9.2.3 The @hibernate.property tag
	9.2.4 The @hibernate.column tag

	Basic relationships
	9.3.1 The @hibernate.many-to-one tag
	9.3.2 The @hibernate.component tag
	Using a single component
	Multiples components on a single class

	Building collections
	9.4.1 One-to-many: a kicking set of Speakers
	9.4.2 The @hibernate.set tag
	9.4.3 The @hibernate.collection-key
	9.4.4 The @hibernate.collection-one-to-many tag

	Going where no XDoclet has gone before
	9.5.1 Merge points
	9.5.2 Property substitution

	Generating the hibernate.cfg.xml file
	Summary

	Unit testing with JUnit and DBUnit
	Introduction to unit testing
	10.1.1 Automate those tests
	10.1.2 Assertions
	10.1.3 Expect failures

	JUnit
	10.2.1 Test-infecting your build file
	The JUnit task
	The junitreport task

	10.2.2 Polishing off the build file
	Building the reports directory
	Adding a testing task

	Testing the persistence layer
	10.3.1 What do we want to test?
	Expect classes to be persistent
	Expect mapped fields to persist
	Expect persistent entities to cascade
	Expect queries to return the right objects

	10.3.2 Testing basic persistence
	Organizing your tests
	Event, persist thyself!

	10.3.3 Testing queries
	10.3.4 General database testing tips
	Use multiple databases
	Write nonbrittle tests
	Reset the database to a known state

	Testing with DBUnit
	10.4.1 Loading test data
	Creating the DTD
	Creating test data
	Importing test data

	10.4.2 ProjectDatabaseTestCase
	TestEventDao

	Summary

	What’s new in Hibernate 3
	Filters
	Mapping improvements
	11.2.1 Multiple table mapping
	11.2.2 Discriminator formulas
	11.2.3 Union subclasses
	11.2.4 Property references

	Dynamic classes
	Annotations
	Stored procedures and SQL
	Persistence events
	Lazy properties
	Summary

	The complete Hibernate mapping catalog
	A sample association
	A.1.1 Unidirectional
	Table schema

	A.1.2 Bidirectional

	Many-to-one
	A.2.1 Unidirectional
	Table schemas

	A.2.2 Bidirectional

	One-to-one
	A.3.1 Identical primary keys
	Table schema

	A.3.2 Foreign key one-to-one
	Unidirectional
	Table schema
	Bidirectional

	Components
	A.4.1 Unidirectional
	Table schema

	A.4.2 Bidirectional

	Set: one-to-many
	A.5.1 Unidirectional
	Table schema

	A.5.2 Bidirectional

	Set: many-to-many
	A.6.1 Unidirectional
	Table schema

	A.6.2 Bidirectional

	Lists
	A.7.1 Unidirectional one-to-many list
	Table schema

	A.7.2 List of simple values
	Table schema

	A.7.3 Other lists

	Maps
	A.8.1 One-to-many entity maps
	Table schema

	A.8.2 Many-to-many entity maps
	Table schema

	A.8.3 Map of components
	Table schema

	A.8.4 Maps with entity keys
	Table schema

	A.8.5 Other maps

	Arrays
	A.9.1 Entity arrays
	Table schema

	A.9.2 Primitive arrays
	Table schema

	A.9.3 Other arrays

	Bags
	A.10.1 Bags of entities: one-to-many, unidirectional
	Table schema

	A.10.2 Other bags

	Subclasses
	A.11.1 Table-per-class hierarchy strategy
	Table schema

	A.11.2 Table-per-subclass strategy
	Table schema

	A.11.3 Table-per-concrete-class strategy: any
	Table schema
	Non-class-based discriminators
	Other possible relationships

	A.11.4 Table-per-concrete-class strategy: union
	Table schema

	Summary

	Index

